Zhenhong Tian , Li-ang Zhu , Jingxiu Tian , Hongshun Miao , Yinghui Jiang , Rongkang Tan , Xiangxin Li , Yan Liu
{"title":"双掺杂调控P2/O3共相钠离子电池的结构与电化学性能研究","authors":"Zhenhong Tian , Li-ang Zhu , Jingxiu Tian , Hongshun Miao , Yinghui Jiang , Rongkang Tan , Xiangxin Li , Yan Liu","doi":"10.1016/j.ssi.2025.117029","DOIUrl":null,"url":null,"abstract":"<div><div>A trace Ti/Mg co-doped Na<sub>0.8</sub>Ni<sub>0.35</sub>Mn<sub>0.48</sub>Ti<sub>0.12</sub>Mg<sub>0.05</sub>O<sub>2</sub> (TiMg-NNM) cathode was synthesized, where Ti ions are located in the transition metal layers and Mg ions are incorporated into the sodium layers. The co-doping expands the Na-layer spacing within the layered structure, thereby lowering the diffusion barrier for Na-ions. Structural stability is significantly enhanced due to the robust Ti<img>O bond and the pillar-like effect of Mg ions, which also helps to minimize surface side reactions with the electrolyte. The merits endow a high reversible capacity of TiMg-NNM cathode with 130.5 mAh/g at 1C, the 85.8 % capacity retention rate at 100 cycles at 1C, much greater than 35.6 % of NNM. The synergistic effect of P2 and O3 phases was strengthened by the doping of Mg and Ti, so that the obtained NNMMT had high electrochemical stability. The research offers a practical approach and fresh perspectives for designing high-performance layered oxide cathode materials with improved structural and interfacial stability for SIBs.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"431 ","pages":"Article 117029"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the structure and electrochemical properties of double-doped regulated P2/O3 cophasic sodium-ion batteries\",\"authors\":\"Zhenhong Tian , Li-ang Zhu , Jingxiu Tian , Hongshun Miao , Yinghui Jiang , Rongkang Tan , Xiangxin Li , Yan Liu\",\"doi\":\"10.1016/j.ssi.2025.117029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A trace Ti/Mg co-doped Na<sub>0.8</sub>Ni<sub>0.35</sub>Mn<sub>0.48</sub>Ti<sub>0.12</sub>Mg<sub>0.05</sub>O<sub>2</sub> (TiMg-NNM) cathode was synthesized, where Ti ions are located in the transition metal layers and Mg ions are incorporated into the sodium layers. The co-doping expands the Na-layer spacing within the layered structure, thereby lowering the diffusion barrier for Na-ions. Structural stability is significantly enhanced due to the robust Ti<img>O bond and the pillar-like effect of Mg ions, which also helps to minimize surface side reactions with the electrolyte. The merits endow a high reversible capacity of TiMg-NNM cathode with 130.5 mAh/g at 1C, the 85.8 % capacity retention rate at 100 cycles at 1C, much greater than 35.6 % of NNM. The synergistic effect of P2 and O3 phases was strengthened by the doping of Mg and Ti, so that the obtained NNMMT had high electrochemical stability. The research offers a practical approach and fresh perspectives for designing high-performance layered oxide cathode materials with improved structural and interfacial stability for SIBs.</div></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"431 \",\"pages\":\"Article 117029\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167273825002486\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825002486","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Study on the structure and electrochemical properties of double-doped regulated P2/O3 cophasic sodium-ion batteries
A trace Ti/Mg co-doped Na0.8Ni0.35Mn0.48Ti0.12Mg0.05O2 (TiMg-NNM) cathode was synthesized, where Ti ions are located in the transition metal layers and Mg ions are incorporated into the sodium layers. The co-doping expands the Na-layer spacing within the layered structure, thereby lowering the diffusion barrier for Na-ions. Structural stability is significantly enhanced due to the robust TiO bond and the pillar-like effect of Mg ions, which also helps to minimize surface side reactions with the electrolyte. The merits endow a high reversible capacity of TiMg-NNM cathode with 130.5 mAh/g at 1C, the 85.8 % capacity retention rate at 100 cycles at 1C, much greater than 35.6 % of NNM. The synergistic effect of P2 and O3 phases was strengthened by the doping of Mg and Ti, so that the obtained NNMMT had high electrochemical stability. The research offers a practical approach and fresh perspectives for designing high-performance layered oxide cathode materials with improved structural and interfacial stability for SIBs.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.