通过制备锌钴双金属增强海藻酸钙碳气凝胶,增强高通量水生环境中微塑料的捕获

IF 12.5 1区 化学 Q1 CHEMISTRY, APPLIED
Yingying Li , Sijia Zhang , Mengna Wang , Shuanghe Liu , Yiren Wang , Yuhan Chen , Jiahui Li , Shuang Xu , Xiaohong Hou
{"title":"通过制备锌钴双金属增强海藻酸钙碳气凝胶,增强高通量水生环境中微塑料的捕获","authors":"Yingying Li ,&nbsp;Sijia Zhang ,&nbsp;Mengna Wang ,&nbsp;Shuanghe Liu ,&nbsp;Yiren Wang ,&nbsp;Yuhan Chen ,&nbsp;Jiahui Li ,&nbsp;Shuang Xu ,&nbsp;Xiaohong Hou","doi":"10.1016/j.carbpol.2025.124434","DOIUrl":null,"url":null,"abstract":"<div><div>Stable framework-structured materials are effective adsorbents for mitigating microplastics (MPs) pollution in the water ecosystem. Calcium alginate (Alg), a plentiful marine biomass with functional groups and high stability, shows great potential as a framework precursor. Herein, we fabricated ZnCo-bimetallic-augmented calcium alginate carbon aerogels (ZnCo/Alg@CAs) with a monolithic structure via in situ synthesis of ZnCo-ZIF on Alg matrix combined with thermal treatment. The in situ synthesis strategy effectively suppressed metal ion aggregation and enhanced the structural stability of MOF-derived carbon materials. Remarkably, ZnCo/Alg@CAs exhibited a high water flux (4431 L/(h·m<sup>2</sup>)), rapid adsorption kinetics (100 min), and high removal capacities (1673–1989 mg/g) for various MPs, outperforming reported adsorbents. Moreover, ZnCo/Alg@CAs showed anti-interference to interfering ions, acid/alkali, and humic acid. Compared to powdered materials, the monolithic structure of ZnCo/Alg@CAs enabled direct integration into closed-loop systems coupled with peristaltic pumps, achieving dynamic removal of MPs during water purification processes. Based on the analytical results from FTIR, XPS, and Density Functional Theory calculations, the primary adsorption mechanism in this system involves a synergistic effect between hydrogen bonding, p-π stacking interaction, and physical retention. This research is anticipated to pave new avenues for the sustainable treatment of MPs from large volumes of water in the aqueous environments.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"370 ","pages":"Article 124434"},"PeriodicalIF":12.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing microplastics capture in high-flux aquatic environments via the fabrication of a ZnCo-bimetallic-augmented calcium alginate carbon aerogels\",\"authors\":\"Yingying Li ,&nbsp;Sijia Zhang ,&nbsp;Mengna Wang ,&nbsp;Shuanghe Liu ,&nbsp;Yiren Wang ,&nbsp;Yuhan Chen ,&nbsp;Jiahui Li ,&nbsp;Shuang Xu ,&nbsp;Xiaohong Hou\",\"doi\":\"10.1016/j.carbpol.2025.124434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stable framework-structured materials are effective adsorbents for mitigating microplastics (MPs) pollution in the water ecosystem. Calcium alginate (Alg), a plentiful marine biomass with functional groups and high stability, shows great potential as a framework precursor. Herein, we fabricated ZnCo-bimetallic-augmented calcium alginate carbon aerogels (ZnCo/Alg@CAs) with a monolithic structure via in situ synthesis of ZnCo-ZIF on Alg matrix combined with thermal treatment. The in situ synthesis strategy effectively suppressed metal ion aggregation and enhanced the structural stability of MOF-derived carbon materials. Remarkably, ZnCo/Alg@CAs exhibited a high water flux (4431 L/(h·m<sup>2</sup>)), rapid adsorption kinetics (100 min), and high removal capacities (1673–1989 mg/g) for various MPs, outperforming reported adsorbents. Moreover, ZnCo/Alg@CAs showed anti-interference to interfering ions, acid/alkali, and humic acid. Compared to powdered materials, the monolithic structure of ZnCo/Alg@CAs enabled direct integration into closed-loop systems coupled with peristaltic pumps, achieving dynamic removal of MPs during water purification processes. Based on the analytical results from FTIR, XPS, and Density Functional Theory calculations, the primary adsorption mechanism in this system involves a synergistic effect between hydrogen bonding, p-π stacking interaction, and physical retention. This research is anticipated to pave new avenues for the sustainable treatment of MPs from large volumes of water in the aqueous environments.</div></div>\",\"PeriodicalId\":261,\"journal\":{\"name\":\"Carbohydrate Polymers\",\"volume\":\"370 \",\"pages\":\"Article 124434\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144861725012184\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725012184","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

稳定的框架结构材料是减轻水生态系统中微塑料污染的有效吸附剂。海藻酸钙(Alg)是一种具有丰富的官能团和高稳定性的海洋生物质,具有作为框架前体的巨大潜力。本文通过原位合成ZnCo- zif并结合热处理,制备了具有整体结构的ZnCo-双金属增强海藻酸钙碳气凝胶(ZnCo/Alg@CAs)。原位合成策略有效抑制了金属离子聚集,提高了mof衍生碳材料的结构稳定性。值得注意的是,ZnCo/Alg@CAs对各种MPs具有高水通量(4431 L/(h·m2))、快速吸附动力学(100 min)和高去除能力(1673-1989 mg/g),优于已有报道的吸附剂。此外,ZnCo/Alg@CAs对干扰离子、酸/碱、腐植酸具有较强的抗干扰性。与粉末状材料相比,ZnCo/Alg@CAs的整体结构可以直接集成到与蠕动泵耦合的闭环系统中,在水净化过程中实现MPs的动态去除。基于FTIR、XPS和密度泛函理论计算的分析结果,该体系的主要吸附机制是氢键、p-π堆积相互作用和物理保留之间的协同作用。这项研究预计将为水环境中大量水的MPs的可持续处理铺平新的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing microplastics capture in high-flux aquatic environments via the fabrication of a ZnCo-bimetallic-augmented calcium alginate carbon aerogels
Stable framework-structured materials are effective adsorbents for mitigating microplastics (MPs) pollution in the water ecosystem. Calcium alginate (Alg), a plentiful marine biomass with functional groups and high stability, shows great potential as a framework precursor. Herein, we fabricated ZnCo-bimetallic-augmented calcium alginate carbon aerogels (ZnCo/Alg@CAs) with a monolithic structure via in situ synthesis of ZnCo-ZIF on Alg matrix combined with thermal treatment. The in situ synthesis strategy effectively suppressed metal ion aggregation and enhanced the structural stability of MOF-derived carbon materials. Remarkably, ZnCo/Alg@CAs exhibited a high water flux (4431 L/(h·m2)), rapid adsorption kinetics (100 min), and high removal capacities (1673–1989 mg/g) for various MPs, outperforming reported adsorbents. Moreover, ZnCo/Alg@CAs showed anti-interference to interfering ions, acid/alkali, and humic acid. Compared to powdered materials, the monolithic structure of ZnCo/Alg@CAs enabled direct integration into closed-loop systems coupled with peristaltic pumps, achieving dynamic removal of MPs during water purification processes. Based on the analytical results from FTIR, XPS, and Density Functional Theory calculations, the primary adsorption mechanism in this system involves a synergistic effect between hydrogen bonding, p-π stacking interaction, and physical retention. This research is anticipated to pave new avenues for the sustainable treatment of MPs from large volumes of water in the aqueous environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信