具有氮化硼网络的双功能相变水凝胶:用于电子冷却的高性能热界面材料

IF 9.8 1区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Luying Qin , Lingzhi Zhong , Fuyu Qin , Jun Wang , Tao Xu , Mengjie Song , Yi Yang , Weitao Shao
{"title":"具有氮化硼网络的双功能相变水凝胶:用于电子冷却的高性能热界面材料","authors":"Luying Qin ,&nbsp;Lingzhi Zhong ,&nbsp;Fuyu Qin ,&nbsp;Jun Wang ,&nbsp;Tao Xu ,&nbsp;Mengjie Song ,&nbsp;Yi Yang ,&nbsp;Weitao Shao","doi":"10.1016/j.compscitech.2025.111386","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of high-frequency 5G communication technologies, thermal management demands for electronics have surged, posing critical challenges for thermal interface materials (TIMs), including insufficient thermal conductivity, excessive interfacial thermal resistance, and phase-change material leakage. To address these, this study designed a boron nitride (BN)-reinforced composite phase-change hydrogel: Polyvinyl alcohol (PVA)/sodium alginate (SA)/BN/OP44. Thermal conduction pathways were built based on a 3D PVA/SA network via gradient BN filling, and OP44 was encapsulated within a PVA/SA cross-linked network, addressing the trade-off between heat transfer, storage, and stability. Results show the optimized composite with 14 BN mass fraction (wt%) BN (<em>P</em>S–O–B<sub>4</sub>) achieves a thermal conductivity of 1.16 W/(m·K) (346 % enhancement over pure OP44), low thermal resistance of 27.63 (°C cm<sup>2</sup>)/W, and mass retention &gt;96.5 % after 8 thermal cycles. DSC confirms a melting range (39.1–40 °C) matching chip conditions, with latent heat retention &gt;97.5 %. Thermal simulation shows the material delays temperature rise via phase-change and enables steady dissipation via the BN network. This work provides a novel paradigm for designing TIMs with high conduction, low resistance, and stability, advancing practical dynamic thermal management. The material demonstrates commercialization potential for high-power 5G devices.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"272 ","pages":"Article 111386"},"PeriodicalIF":9.8000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-functional phase change hydrogels with boron nitride networks: High-Performance thermal interface materials for electronics cooling\",\"authors\":\"Luying Qin ,&nbsp;Lingzhi Zhong ,&nbsp;Fuyu Qin ,&nbsp;Jun Wang ,&nbsp;Tao Xu ,&nbsp;Mengjie Song ,&nbsp;Yi Yang ,&nbsp;Weitao Shao\",\"doi\":\"10.1016/j.compscitech.2025.111386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the rapid development of high-frequency 5G communication technologies, thermal management demands for electronics have surged, posing critical challenges for thermal interface materials (TIMs), including insufficient thermal conductivity, excessive interfacial thermal resistance, and phase-change material leakage. To address these, this study designed a boron nitride (BN)-reinforced composite phase-change hydrogel: Polyvinyl alcohol (PVA)/sodium alginate (SA)/BN/OP44. Thermal conduction pathways were built based on a 3D PVA/SA network via gradient BN filling, and OP44 was encapsulated within a PVA/SA cross-linked network, addressing the trade-off between heat transfer, storage, and stability. Results show the optimized composite with 14 BN mass fraction (wt%) BN (<em>P</em>S–O–B<sub>4</sub>) achieves a thermal conductivity of 1.16 W/(m·K) (346 % enhancement over pure OP44), low thermal resistance of 27.63 (°C cm<sup>2</sup>)/W, and mass retention &gt;96.5 % after 8 thermal cycles. DSC confirms a melting range (39.1–40 °C) matching chip conditions, with latent heat retention &gt;97.5 %. Thermal simulation shows the material delays temperature rise via phase-change and enables steady dissipation via the BN network. This work provides a novel paradigm for designing TIMs with high conduction, low resistance, and stability, advancing practical dynamic thermal management. The material demonstrates commercialization potential for high-power 5G devices.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":\"272 \",\"pages\":\"Article 111386\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353825003549\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353825003549","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

随着高频5G通信技术的快速发展,电子产品的热管理需求激增,对热界面材料(TIMs)提出了严峻的挑战,包括导热系数不足、界面热阻过大、相变材料泄漏等。为了解决这些问题,本研究设计了一种氮化硼(BN)增强复合相变水凝胶:聚乙烯醇(PVA)/海藻酸钠(SA)/BN/OP44。通过梯度BN填充建立了基于3D PVA/SA网络的热传导途径,并将OP44封装在PVA/SA交联网络中,解决了传热、存储和稳定性之间的权衡。结果表明,优化后的BN质量分数(wt%)为14 BN (PS-O-B4)的复合材料导热系数为1.16 W/(m·K),比纯OP44提高了346%,热阻低至27.63(°C cm2)/W,经过8次热循环后,质量保持率为96.5%。DSC证实熔化范围(39.1-40°C)与芯片条件相匹配,潜热保留率为97.5%。热模拟表明,该材料通过相变延缓了温度的上升,并通过BN网络实现了稳定的耗散。这项工作为设计高导、低阻、稳定的TIMs提供了一个新的范例,促进了实际的动态热管理。该材料展示了高功率5G设备的商业化潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual-functional phase change hydrogels with boron nitride networks: High-Performance thermal interface materials for electronics cooling

Dual-functional phase change hydrogels with boron nitride networks: High-Performance thermal interface materials for electronics cooling
With the rapid development of high-frequency 5G communication technologies, thermal management demands for electronics have surged, posing critical challenges for thermal interface materials (TIMs), including insufficient thermal conductivity, excessive interfacial thermal resistance, and phase-change material leakage. To address these, this study designed a boron nitride (BN)-reinforced composite phase-change hydrogel: Polyvinyl alcohol (PVA)/sodium alginate (SA)/BN/OP44. Thermal conduction pathways were built based on a 3D PVA/SA network via gradient BN filling, and OP44 was encapsulated within a PVA/SA cross-linked network, addressing the trade-off between heat transfer, storage, and stability. Results show the optimized composite with 14 BN mass fraction (wt%) BN (PS–O–B4) achieves a thermal conductivity of 1.16 W/(m·K) (346 % enhancement over pure OP44), low thermal resistance of 27.63 (°C cm2)/W, and mass retention >96.5 % after 8 thermal cycles. DSC confirms a melting range (39.1–40 °C) matching chip conditions, with latent heat retention >97.5 %. Thermal simulation shows the material delays temperature rise via phase-change and enables steady dissipation via the BN network. This work provides a novel paradigm for designing TIMs with high conduction, low resistance, and stability, advancing practical dynamic thermal management. The material demonstrates commercialization potential for high-power 5G devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Science and Technology
Composites Science and Technology 工程技术-材料科学:复合
CiteScore
16.20
自引率
9.90%
发文量
611
审稿时长
33 days
期刊介绍: Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites. Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信