用于无人机应用的碳纤维增强复合材料热障涂层

IF 3.4 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Sumit Singh , Devesh Kumar , Sanjay Kumar Soni
{"title":"用于无人机应用的碳纤维增强复合材料热障涂层","authors":"Sumit Singh ,&nbsp;Devesh Kumar ,&nbsp;Sanjay Kumar Soni","doi":"10.1016/j.jics.2025.102098","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon fiber-reinforced polymer (CFRP) composites, despite their excellent strength-to-weight ratio, suffer from severe thermal degradation under high-temperature conditions. This study introduces a hybrid thermal barrier coating (TBC) system incorporating α-Al<sub>2</sub>O<sub>3</sub> and YSZ nanoparticles dispersed in an epoxy matrix, applied to CFRP substrates through a combination of hand lay-up, nanoparticle spraying, and Vacuum-Assisted Resin Transfer Molding (VARTM). Designed for applications such as firefighting drones, the multilayered TBC architecture aims to significantly enhance flame resistance, thermal stability, and mechanical integrity, thereby extending the operational capability of CFRP-based structural components in extreme environments.</div><div>Experimental evaluation under direct flame exposure up to 750 °C demonstrated that coated samples limited heat transfer to 190–235 °C. Flexural strength retention reached 50 % even after severe thermal loading, compared to over 90 % loss in uncoated CFRP. FTIR analysis confirmed crosslinking through N–H bending, aromatic C=C stretching (1580 cm<sup>−1</sup>), and C–O–C vibrations (1200–1300 cm<sup>−1</sup>). DSC revealed a high melting temperature (375–400 °C) with thermal degradation onset beyond 420 °C. TGA indicated a retained mass above 22 % at 500 °C, while thermal conductivity improved to 4.29 W/m⋅K (7.27 × over neat CFRP). Surface temperature control remained consistent across thermal cycles, and post-exposure failure load reduction was limited to 12–50 % across 550–750 °C. These results confirm the TBC-CFRP composite as a robust, scalable solution for high-temperature aerospace and firefighting applications.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"102 11","pages":"Article 102098"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal barrier coating for carbon fiber-reinforced composite material for drone applications\",\"authors\":\"Sumit Singh ,&nbsp;Devesh Kumar ,&nbsp;Sanjay Kumar Soni\",\"doi\":\"10.1016/j.jics.2025.102098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carbon fiber-reinforced polymer (CFRP) composites, despite their excellent strength-to-weight ratio, suffer from severe thermal degradation under high-temperature conditions. This study introduces a hybrid thermal barrier coating (TBC) system incorporating α-Al<sub>2</sub>O<sub>3</sub> and YSZ nanoparticles dispersed in an epoxy matrix, applied to CFRP substrates through a combination of hand lay-up, nanoparticle spraying, and Vacuum-Assisted Resin Transfer Molding (VARTM). Designed for applications such as firefighting drones, the multilayered TBC architecture aims to significantly enhance flame resistance, thermal stability, and mechanical integrity, thereby extending the operational capability of CFRP-based structural components in extreme environments.</div><div>Experimental evaluation under direct flame exposure up to 750 °C demonstrated that coated samples limited heat transfer to 190–235 °C. Flexural strength retention reached 50 % even after severe thermal loading, compared to over 90 % loss in uncoated CFRP. FTIR analysis confirmed crosslinking through N–H bending, aromatic C=C stretching (1580 cm<sup>−1</sup>), and C–O–C vibrations (1200–1300 cm<sup>−1</sup>). DSC revealed a high melting temperature (375–400 °C) with thermal degradation onset beyond 420 °C. TGA indicated a retained mass above 22 % at 500 °C, while thermal conductivity improved to 4.29 W/m⋅K (7.27 × over neat CFRP). Surface temperature control remained consistent across thermal cycles, and post-exposure failure load reduction was limited to 12–50 % across 550–750 °C. These results confirm the TBC-CFRP composite as a robust, scalable solution for high-temperature aerospace and firefighting applications.</div></div>\",\"PeriodicalId\":17276,\"journal\":{\"name\":\"Journal of the Indian Chemical Society\",\"volume\":\"102 11\",\"pages\":\"Article 102098\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019452225005333\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019452225005333","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

碳纤维增强聚合物(CFRP)复合材料尽管具有优异的强度重量比,但在高温条件下会发生严重的热降解。本研究介绍了一种混合热障涂层(TBC)系统,该系统将α-Al2O3和YSZ纳米颗粒分散在环氧树脂基体中,通过手工铺层、纳米颗粒喷涂和真空辅助树脂转移成型(VARTM)相结合的方法应用于CFRP基材。多层TBC结构专为消防无人机等应用而设计,旨在显着提高阻燃性,热稳定性和机械完整性,从而扩展基于cfrp的结构部件在极端环境中的操作能力。在高达750°C的直接火焰暴露下的实验评估表明,涂层样品的传热限制在190-235°C。即使在严重的热负荷下,抗弯强度保持率也达到50%,而未涂覆的CFRP的抗弯强度损失超过90%。FTIR分析证实了通过N-H弯曲,芳香C=C拉伸(1580 cm−1)和C - o - C振动(1200-1300 cm−1)进行交联。DSC显示,熔点高(375-400°C),超过420°C就开始热降解。热重分析表明,500°C时,CFRP的质量保持在22%以上,导热系数提高到4.29 W/m·K(比纯CFRP高7.27 x)。在整个热循环过程中,表面温度控制保持一致,在550-750°C范围内,暴露后故障负荷减少限制在12 - 50%。这些结果证实了TBC-CFRP复合材料是一种强大的、可扩展的解决方案,适用于高温航空航天和消防应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Thermal barrier coating for carbon fiber-reinforced composite material for drone applications

Thermal barrier coating for carbon fiber-reinforced composite material for drone applications
Carbon fiber-reinforced polymer (CFRP) composites, despite their excellent strength-to-weight ratio, suffer from severe thermal degradation under high-temperature conditions. This study introduces a hybrid thermal barrier coating (TBC) system incorporating α-Al2O3 and YSZ nanoparticles dispersed in an epoxy matrix, applied to CFRP substrates through a combination of hand lay-up, nanoparticle spraying, and Vacuum-Assisted Resin Transfer Molding (VARTM). Designed for applications such as firefighting drones, the multilayered TBC architecture aims to significantly enhance flame resistance, thermal stability, and mechanical integrity, thereby extending the operational capability of CFRP-based structural components in extreme environments.
Experimental evaluation under direct flame exposure up to 750 °C demonstrated that coated samples limited heat transfer to 190–235 °C. Flexural strength retention reached 50 % even after severe thermal loading, compared to over 90 % loss in uncoated CFRP. FTIR analysis confirmed crosslinking through N–H bending, aromatic C=C stretching (1580 cm−1), and C–O–C vibrations (1200–1300 cm−1). DSC revealed a high melting temperature (375–400 °C) with thermal degradation onset beyond 420 °C. TGA indicated a retained mass above 22 % at 500 °C, while thermal conductivity improved to 4.29 W/m⋅K (7.27 × over neat CFRP). Surface temperature control remained consistent across thermal cycles, and post-exposure failure load reduction was limited to 12–50 % across 550–750 °C. These results confirm the TBC-CFRP composite as a robust, scalable solution for high-temperature aerospace and firefighting applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
7.70%
发文量
492
审稿时长
3-8 weeks
期刊介绍: The Journal of the Indian Chemical Society publishes original, fundamental, theorical, experimental research work of highest quality in all areas of chemistry, biochemistry, medicinal chemistry, electrochemistry, agrochemistry, chemical engineering and technology, food chemistry, environmental chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信