评价铜纳米催化剂在一氧化碳合成硫代甲酸甲酯中的性能:结构和机理的见解

IF 4.2 Q2 CHEMISTRY, MULTIDISCIPLINARY
Fatemeh Fallah Eri Sofla , Leila Mahdavian , Azam Marjani
{"title":"评价铜纳米催化剂在一氧化碳合成硫代甲酸甲酯中的性能:结构和机理的见解","authors":"Fatemeh Fallah Eri Sofla ,&nbsp;Leila Mahdavian ,&nbsp;Azam Marjani","doi":"10.1016/j.rechem.2025.102728","DOIUrl":null,"url":null,"abstract":"<div><div><em>S</em>-methyl thioformate (MTF) holds promise in pharmaceutical applications due to its antimicrobial properties and role in synthesizing therapeutic agents for diseases such as cancer and diabetes. This study employs density functional theory (DFT) to investigate the catalytic synthesis of MTF from carbon monoxide (CO) and methanethiol (CH₃SH) using a Cu₂₀O₂₀ nanocatalyst model. Three reaction pathways were explored based on varying reactant ratios: Path A (1:1 CO:CH₃SH leading to CH₃SCOH), Path B (2:1 CO:CH₃SSH, leading to HCOSCH₃ + COS), and Path C (1:2 CO:CH₃SH, leading to CH₃SCOH + H₂S). Thermodynamic and kinetic analyses reveal Path A as the most favorable, characterized a lower energy barrier (15–20 kcal.mol<sup>−1</sup>) and enhanced charge transfer (0.26 |e|), leads to efficient MTF formation. Natural Bond Orbital (NBO) analysis of MTF conformations indicates the <em>cis</em> form is more stable, attributed to optimized bond lengths, electron distributions, and hyper conjugative interactions. These findings provide mechanistic insights for optimizing catalytic processes in sulfur chemistry, with implications for developing stable pro-drugs.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"18 ","pages":"Article 102728"},"PeriodicalIF":4.2000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of copper nanocatalyst performance in S-methyl thioformate synthesis from carbon monoxide: Structural and mechanistic insights\",\"authors\":\"Fatemeh Fallah Eri Sofla ,&nbsp;Leila Mahdavian ,&nbsp;Azam Marjani\",\"doi\":\"10.1016/j.rechem.2025.102728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>S</em>-methyl thioformate (MTF) holds promise in pharmaceutical applications due to its antimicrobial properties and role in synthesizing therapeutic agents for diseases such as cancer and diabetes. This study employs density functional theory (DFT) to investigate the catalytic synthesis of MTF from carbon monoxide (CO) and methanethiol (CH₃SH) using a Cu₂₀O₂₀ nanocatalyst model. Three reaction pathways were explored based on varying reactant ratios: Path A (1:1 CO:CH₃SH leading to CH₃SCOH), Path B (2:1 CO:CH₃SSH, leading to HCOSCH₃ + COS), and Path C (1:2 CO:CH₃SH, leading to CH₃SCOH + H₂S). Thermodynamic and kinetic analyses reveal Path A as the most favorable, characterized a lower energy barrier (15–20 kcal.mol<sup>−1</sup>) and enhanced charge transfer (0.26 |e|), leads to efficient MTF formation. Natural Bond Orbital (NBO) analysis of MTF conformations indicates the <em>cis</em> form is more stable, attributed to optimized bond lengths, electron distributions, and hyper conjugative interactions. These findings provide mechanistic insights for optimizing catalytic processes in sulfur chemistry, with implications for developing stable pro-drugs.</div></div>\",\"PeriodicalId\":420,\"journal\":{\"name\":\"Results in Chemistry\",\"volume\":\"18 \",\"pages\":\"Article 102728\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211715625007118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715625007118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

s -甲基硫代甲酸酯(MTF)由于其抗菌特性和在癌症和糖尿病等疾病的合成治疗剂中的作用,在制药应用中具有前景。本文采用密度泛函理论(DFT),采用Cu₂₀O₂₀纳米催化剂模型,研究了由一氧化碳(CO)和甲硫醇(CH₃SH)催化合成MTF的过程。基于不同的反应物比例,探索了三种反应路径:路径A (1:1 CO:CH₃SH生成CH₃SCOH)、路径B (2:1 CO:CH₃SSH生成HCOSCH₃+ COS)和路径C (1:2 CO:CH₃SH生成CH₃SCOH + H₂S)。热力学和动力学分析表明,路径A是最有利的,具有较低的能垒(15-20 kcal.mol−1)和增强的电荷转移(0.26 |e|),可以有效地形成MTF。MTF构象的自然键轨道(NBO)分析表明,顺式构象更稳定,这归因于优化的键长、电子分布和超共轭相互作用。这些发现为优化硫化学催化过程提供了机制见解,对开发稳定的前药具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evaluation of copper nanocatalyst performance in S-methyl thioformate synthesis from carbon monoxide: Structural and mechanistic insights

Evaluation of copper nanocatalyst performance in S-methyl thioformate synthesis from carbon monoxide: Structural and mechanistic insights
S-methyl thioformate (MTF) holds promise in pharmaceutical applications due to its antimicrobial properties and role in synthesizing therapeutic agents for diseases such as cancer and diabetes. This study employs density functional theory (DFT) to investigate the catalytic synthesis of MTF from carbon monoxide (CO) and methanethiol (CH₃SH) using a Cu₂₀O₂₀ nanocatalyst model. Three reaction pathways were explored based on varying reactant ratios: Path A (1:1 CO:CH₃SH leading to CH₃SCOH), Path B (2:1 CO:CH₃SSH, leading to HCOSCH₃ + COS), and Path C (1:2 CO:CH₃SH, leading to CH₃SCOH + H₂S). Thermodynamic and kinetic analyses reveal Path A as the most favorable, characterized a lower energy barrier (15–20 kcal.mol−1) and enhanced charge transfer (0.26 |e|), leads to efficient MTF formation. Natural Bond Orbital (NBO) analysis of MTF conformations indicates the cis form is more stable, attributed to optimized bond lengths, electron distributions, and hyper conjugative interactions. These findings provide mechanistic insights for optimizing catalytic processes in sulfur chemistry, with implications for developing stable pro-drugs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Chemistry
Results in Chemistry Chemistry-Chemistry (all)
CiteScore
2.70
自引率
8.70%
发文量
380
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信