具有变阶分数阶导数和lsamvy噪声的一般流行病模型:历史流感数据的动态分析和应用

IF 6.8 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Yassine Sabbar , Saud Fahad Aldosary
{"title":"具有变阶分数阶导数和lsamvy噪声的一般流行病模型:历史流感数据的动态分析和应用","authors":"Yassine Sabbar ,&nbsp;Saud Fahad Aldosary","doi":"10.1016/j.aej.2025.09.021","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel fractional-stochastic epidemic model that integrates <span><math><mi>α</mi></math></span>-stable Lévy jumps with time-dependent fractional derivatives, providing a comprehensive framework for capturing the complex dynamics of epidemiological systems. We rigorously establish the existence and uniqueness of solutions, with a particular emphasis on Ulam–Hyers (UH) stability to assess the system’s resilience to fluctuations and parameter variations. To support numerical investigations, we develop a MATLAB-based simulation framework that combines the Adams–Bashforth–Moulton (ABM) and Chambers–Mallows–Stuck (CMS) algorithms. This computational approach enables a detailed examination of how the stability index <span><math><mi>α</mi></math></span> and the fractional-order function <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> influence the system’s behavior. Furthermore, we conduct an extensive series of numerical tests to analyze the statistical properties of the generated distribution and perform a sensitivity analysis of key deterministic parameters governing transmission and vaccination. To assess the reliability of our approach, we validate the model using historical data from the 1919 Spanish flu outbreak in Sydney. We also perform stochastic model fitting to generate forward-looking predictions. These analyses demonstrate the model’s applicability and effectiveness in real-world epidemiological scenarios. Additionally, this study advances the mathematical modeling of infectious diseases and establishes a foundation for further developments in epidemiological research.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"130 ","pages":"Pages 459-482"},"PeriodicalIF":6.8000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A general epidemic model with variable-order fractional derivatives and Lévy noise: Dynamical analysis and application to historical influenza data\",\"authors\":\"Yassine Sabbar ,&nbsp;Saud Fahad Aldosary\",\"doi\":\"10.1016/j.aej.2025.09.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a novel fractional-stochastic epidemic model that integrates <span><math><mi>α</mi></math></span>-stable Lévy jumps with time-dependent fractional derivatives, providing a comprehensive framework for capturing the complex dynamics of epidemiological systems. We rigorously establish the existence and uniqueness of solutions, with a particular emphasis on Ulam–Hyers (UH) stability to assess the system’s resilience to fluctuations and parameter variations. To support numerical investigations, we develop a MATLAB-based simulation framework that combines the Adams–Bashforth–Moulton (ABM) and Chambers–Mallows–Stuck (CMS) algorithms. This computational approach enables a detailed examination of how the stability index <span><math><mi>α</mi></math></span> and the fractional-order function <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> influence the system’s behavior. Furthermore, we conduct an extensive series of numerical tests to analyze the statistical properties of the generated distribution and perform a sensitivity analysis of key deterministic parameters governing transmission and vaccination. To assess the reliability of our approach, we validate the model using historical data from the 1919 Spanish flu outbreak in Sydney. We also perform stochastic model fitting to generate forward-looking predictions. These analyses demonstrate the model’s applicability and effectiveness in real-world epidemiological scenarios. Additionally, this study advances the mathematical modeling of infectious diseases and establishes a foundation for further developments in epidemiological research.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"130 \",\"pages\":\"Pages 459-482\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016825009858\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825009858","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的分数-随机流行病模型,该模型将α-稳定lsamvy跳跃与时间相关的分数导数相结合,为捕获流行病学系统的复杂动力学提供了一个全面的框架。我们严格地建立了解的存在性和唯一性,特别强调了Ulam-Hyers (UH)稳定性,以评估系统对波动和参数变化的弹性。为了支持数值研究,我们开发了一个基于matlab的模拟框架,该框架结合了Adams-Bashforth-Moulton (ABM)和Chambers-Mallows-Stuck (CMS)算法。这种计算方法可以详细检查稳定性指数α和分数阶函数h(t)如何影响系统的行为。此外,我们进行了一系列广泛的数值试验,以分析生成分布的统计特性,并对控制传播和疫苗接种的关键确定性参数进行敏感性分析。为了评估我们方法的可靠性,我们使用1919年悉尼西班牙流感爆发的历史数据验证了模型。我们还执行随机模型拟合来生成前瞻性预测。这些分析证明了该模型在现实世界流行病学情景中的适用性和有效性。此外,这项研究推进了传染病的数学建模,并为流行病学研究的进一步发展奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A general epidemic model with variable-order fractional derivatives and Lévy noise: Dynamical analysis and application to historical influenza data
This paper introduces a novel fractional-stochastic epidemic model that integrates α-stable Lévy jumps with time-dependent fractional derivatives, providing a comprehensive framework for capturing the complex dynamics of epidemiological systems. We rigorously establish the existence and uniqueness of solutions, with a particular emphasis on Ulam–Hyers (UH) stability to assess the system’s resilience to fluctuations and parameter variations. To support numerical investigations, we develop a MATLAB-based simulation framework that combines the Adams–Bashforth–Moulton (ABM) and Chambers–Mallows–Stuck (CMS) algorithms. This computational approach enables a detailed examination of how the stability index α and the fractional-order function h(t) influence the system’s behavior. Furthermore, we conduct an extensive series of numerical tests to analyze the statistical properties of the generated distribution and perform a sensitivity analysis of key deterministic parameters governing transmission and vaccination. To assess the reliability of our approach, we validate the model using historical data from the 1919 Spanish flu outbreak in Sydney. We also perform stochastic model fitting to generate forward-looking predictions. These analyses demonstrate the model’s applicability and effectiveness in real-world epidemiological scenarios. Additionally, this study advances the mathematical modeling of infectious diseases and establishes a foundation for further developments in epidemiological research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信