{"title":"奇异厄米度量的中野正性:逼近与应用","authors":"Takahiro Inayama , Shin-ichi Matsumura","doi":"10.1016/j.jfa.2025.111206","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the approximation of singular Hermitian metrics on vector bundles using smooth Hermitian metrics with Nakano semi-positive curvature on Zariski open sets. We show that singular Hermitian metrics capable of this approximation satisfy Nakano semi-positivity as defined through the <span><math><mover><mrow><mo>∂</mo></mrow><mo>‾</mo></mover></math></span>-equation with optimal <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-estimates. Furthermore, for a projective fibration <span><math><mi>f</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></math></span> with a line bundle <em>L</em> on <em>X</em>, we provide a specific condition under which the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-metric on the direct image sheaf <span><math><msub><mrow><mi>f</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi><mo>/</mo><mi>Y</mi></mrow></msub><mo>+</mo><mi>L</mi><mo>)</mo></math></span> admits this approximation. As an application, we establish several vanishing theorems.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"290 1","pages":"Article 111206"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nakano positivity of singular Hermitian metrics: Approximations and applications\",\"authors\":\"Takahiro Inayama , Shin-ichi Matsumura\",\"doi\":\"10.1016/j.jfa.2025.111206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies the approximation of singular Hermitian metrics on vector bundles using smooth Hermitian metrics with Nakano semi-positive curvature on Zariski open sets. We show that singular Hermitian metrics capable of this approximation satisfy Nakano semi-positivity as defined through the <span><math><mover><mrow><mo>∂</mo></mrow><mo>‾</mo></mover></math></span>-equation with optimal <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-estimates. Furthermore, for a projective fibration <span><math><mi>f</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></math></span> with a line bundle <em>L</em> on <em>X</em>, we provide a specific condition under which the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-metric on the direct image sheaf <span><math><msub><mrow><mi>f</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi><mo>/</mo><mi>Y</mi></mrow></msub><mo>+</mo><mi>L</mi><mo>)</mo></math></span> admits this approximation. As an application, we establish several vanishing theorems.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"290 1\",\"pages\":\"Article 111206\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002212362500388X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362500388X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Nakano positivity of singular Hermitian metrics: Approximations and applications
This paper studies the approximation of singular Hermitian metrics on vector bundles using smooth Hermitian metrics with Nakano semi-positive curvature on Zariski open sets. We show that singular Hermitian metrics capable of this approximation satisfy Nakano semi-positivity as defined through the -equation with optimal -estimates. Furthermore, for a projective fibration with a line bundle L on X, we provide a specific condition under which the -metric on the direct image sheaf admits this approximation. As an application, we establish several vanishing theorems.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis