奇异厄米度量的中野正性:逼近与应用

IF 1.6 2区 数学 Q1 MATHEMATICS
Takahiro Inayama , Shin-ichi Matsumura
{"title":"奇异厄米度量的中野正性:逼近与应用","authors":"Takahiro Inayama ,&nbsp;Shin-ichi Matsumura","doi":"10.1016/j.jfa.2025.111206","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the approximation of singular Hermitian metrics on vector bundles using smooth Hermitian metrics with Nakano semi-positive curvature on Zariski open sets. We show that singular Hermitian metrics capable of this approximation satisfy Nakano semi-positivity as defined through the <span><math><mover><mrow><mo>∂</mo></mrow><mo>‾</mo></mover></math></span>-equation with optimal <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-estimates. Furthermore, for a projective fibration <span><math><mi>f</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></math></span> with a line bundle <em>L</em> on <em>X</em>, we provide a specific condition under which the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-metric on the direct image sheaf <span><math><msub><mrow><mi>f</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi><mo>/</mo><mi>Y</mi></mrow></msub><mo>+</mo><mi>L</mi><mo>)</mo></math></span> admits this approximation. As an application, we establish several vanishing theorems.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"290 1","pages":"Article 111206"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nakano positivity of singular Hermitian metrics: Approximations and applications\",\"authors\":\"Takahiro Inayama ,&nbsp;Shin-ichi Matsumura\",\"doi\":\"10.1016/j.jfa.2025.111206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper studies the approximation of singular Hermitian metrics on vector bundles using smooth Hermitian metrics with Nakano semi-positive curvature on Zariski open sets. We show that singular Hermitian metrics capable of this approximation satisfy Nakano semi-positivity as defined through the <span><math><mover><mrow><mo>∂</mo></mrow><mo>‾</mo></mover></math></span>-equation with optimal <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-estimates. Furthermore, for a projective fibration <span><math><mi>f</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></math></span> with a line bundle <em>L</em> on <em>X</em>, we provide a specific condition under which the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-metric on the direct image sheaf <span><math><msub><mrow><mi>f</mi></mrow><mrow><mo>⁎</mo></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mi>X</mi></mrow></msub><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>X</mi><mo>/</mo><mi>Y</mi></mrow></msub><mo>+</mo><mi>L</mi><mo>)</mo></math></span> admits this approximation. As an application, we establish several vanishing theorems.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"290 1\",\"pages\":\"Article 111206\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002212362500388X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362500388X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用Zariski开集上具有Nakano半正曲率的光滑厄米度量,研究了向量束上奇异厄米度量的逼近。我们证明了能够实现这种近似的奇异厄米度量满足Nakano半正性,这种半正性是通过具有最优l2估计的∂零点方程定义的。此外,对于X上有线束L的射影振动f:X→Y,我们提供了一个特定的条件,在该条件下,直接像束f X(KX/Y+L)上的l2度规承认这种近似。作为应用,我们建立了几个消失定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nakano positivity of singular Hermitian metrics: Approximations and applications
This paper studies the approximation of singular Hermitian metrics on vector bundles using smooth Hermitian metrics with Nakano semi-positive curvature on Zariski open sets. We show that singular Hermitian metrics capable of this approximation satisfy Nakano semi-positivity as defined through the -equation with optimal L2-estimates. Furthermore, for a projective fibration f:XY with a line bundle L on X, we provide a specific condition under which the L2-metric on the direct image sheaf fOX(KX/Y+L) admits this approximation. As an application, we establish several vanishing theorems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信