Fangyuan Sun , Ruisheng Diao , Ruiyuan Zeng , Zhanning Liu , Baorong Zhou , Junjie Li , Wangqianyun Tang
{"title":"用直接法分析低惯量电力系统电网跟随变流器暂态稳定性","authors":"Fangyuan Sun , Ruisheng Diao , Ruiyuan Zeng , Zhanning Liu , Baorong Zhou , Junjie Li , Wangqianyun Tang","doi":"10.1016/j.ijepes.2025.111155","DOIUrl":null,"url":null,"abstract":"<div><div>With the increased penetration of renewable energy and reduced proportion of synchronous generators, the low-inertia characteristics of today’s power system become prominent, and the transient stability issue of grid following converter (GFLC) under low inertia system (LIS) condition becomes critical. There are two prominent problems in the transient stability analysis of GFLC-LIS: The angular dynamic of LIS increases the complexity of transient stability analysis, and the nonlinear, possibly negative damping of GFLC makes it difficult to guarantee the conservative of the traditional methods. These problems make the traditional methods inapplicable. In this paper, the transient stability analysis of GFLC-LIS is investigated to provide an accurate estimation of the attraction boundary and critical clearance time (CCT). Firstly, a dynamic model of GFLC-LIS is constructed, considering the phase-locked loop (PLL)-based GFLC dynamics and swing equation-based LIS dynamics. The frequency mutation of PLL at fault occurrence and clearing time is also considered. Secondly, a Zubov-based transient stability analysis method is proposed, which can construct the energy function in a way that is different from the traditional conservation of energy perspective and can address the negative damping issue. Moreover, the accuracy of the CCT estimation is analyzed, and the influences of LIS parameters on transient stability are illustrated. Finally, simulation experiments are carried out to verify the effectiveness of the proposed method.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"172 ","pages":"Article 111155"},"PeriodicalIF":5.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transient stability analysis for grid following converters in low-inertia power systems by direct method\",\"authors\":\"Fangyuan Sun , Ruisheng Diao , Ruiyuan Zeng , Zhanning Liu , Baorong Zhou , Junjie Li , Wangqianyun Tang\",\"doi\":\"10.1016/j.ijepes.2025.111155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the increased penetration of renewable energy and reduced proportion of synchronous generators, the low-inertia characteristics of today’s power system become prominent, and the transient stability issue of grid following converter (GFLC) under low inertia system (LIS) condition becomes critical. There are two prominent problems in the transient stability analysis of GFLC-LIS: The angular dynamic of LIS increases the complexity of transient stability analysis, and the nonlinear, possibly negative damping of GFLC makes it difficult to guarantee the conservative of the traditional methods. These problems make the traditional methods inapplicable. In this paper, the transient stability analysis of GFLC-LIS is investigated to provide an accurate estimation of the attraction boundary and critical clearance time (CCT). Firstly, a dynamic model of GFLC-LIS is constructed, considering the phase-locked loop (PLL)-based GFLC dynamics and swing equation-based LIS dynamics. The frequency mutation of PLL at fault occurrence and clearing time is also considered. Secondly, a Zubov-based transient stability analysis method is proposed, which can construct the energy function in a way that is different from the traditional conservation of energy perspective and can address the negative damping issue. Moreover, the accuracy of the CCT estimation is analyzed, and the influences of LIS parameters on transient stability are illustrated. Finally, simulation experiments are carried out to verify the effectiveness of the proposed method.</div></div>\",\"PeriodicalId\":50326,\"journal\":{\"name\":\"International Journal of Electrical Power & Energy Systems\",\"volume\":\"172 \",\"pages\":\"Article 111155\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Power & Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142061525007033\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525007033","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Transient stability analysis for grid following converters in low-inertia power systems by direct method
With the increased penetration of renewable energy and reduced proportion of synchronous generators, the low-inertia characteristics of today’s power system become prominent, and the transient stability issue of grid following converter (GFLC) under low inertia system (LIS) condition becomes critical. There are two prominent problems in the transient stability analysis of GFLC-LIS: The angular dynamic of LIS increases the complexity of transient stability analysis, and the nonlinear, possibly negative damping of GFLC makes it difficult to guarantee the conservative of the traditional methods. These problems make the traditional methods inapplicable. In this paper, the transient stability analysis of GFLC-LIS is investigated to provide an accurate estimation of the attraction boundary and critical clearance time (CCT). Firstly, a dynamic model of GFLC-LIS is constructed, considering the phase-locked loop (PLL)-based GFLC dynamics and swing equation-based LIS dynamics. The frequency mutation of PLL at fault occurrence and clearing time is also considered. Secondly, a Zubov-based transient stability analysis method is proposed, which can construct the energy function in a way that is different from the traditional conservation of energy perspective and can address the negative damping issue. Moreover, the accuracy of the CCT estimation is analyzed, and the influences of LIS parameters on transient stability are illustrated. Finally, simulation experiments are carried out to verify the effectiveness of the proposed method.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.