基于半主动模型和数据驱动自适应控制的储液罐智能地震摇摆运动控制

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Seyed Ehsan Aghakouchaki Hosseini, Sherif Beskhyroun
{"title":"基于半主动模型和数据驱动自适应控制的储液罐智能地震摇摆运动控制","authors":"Seyed Ehsan Aghakouchaki Hosseini,&nbsp;Sherif Beskhyroun","doi":"10.1016/j.ijepes.2025.111113","DOIUrl":null,"url":null,"abstract":"<div><div>Various mechanisms have been investigated in the literature for seismic protection of fluid tanks. These structures play a pivotal role in the integrity, reliability, and safety of strategic industries. Any damage to fluid tanks can jeopardise these industries and the environment. In this research, a Smart Vertical Isolation System using magnetorheological dampers for rocking isolation of legged rigid cylindrical fluid tanks under base excitations has been proposed and investigated. First, dynamic equations of motion for the rocking rigid fluid tank are developed. Different semi-active classical and an online data-driven adaptive control technique are then employed to examine the efficacy of the rocking isolation system. Parameters of the data-driven controller are estimated online in real-time using the Recursive Least Squares approach, which offers simplicity, robustness against faults, and small memory requirements. Numerical simulations are compared with experimental investigations to validate the accuracy of the developed dynamic equations and the performance of the MR dampers and control techniques in mitigating the seismic effects on the examined fluid tank. The MR dampers and semi-active control strategies proved substantial reductions in the uplift displacement of the tank as one of the main causes of damage to these structures under earthquakes.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"172 ","pages":"Article 111113"},"PeriodicalIF":5.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart seismic rocking motion control of fluid tanks using semi-active model-based and data-driven adaptive control\",\"authors\":\"Seyed Ehsan Aghakouchaki Hosseini,&nbsp;Sherif Beskhyroun\",\"doi\":\"10.1016/j.ijepes.2025.111113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Various mechanisms have been investigated in the literature for seismic protection of fluid tanks. These structures play a pivotal role in the integrity, reliability, and safety of strategic industries. Any damage to fluid tanks can jeopardise these industries and the environment. In this research, a Smart Vertical Isolation System using magnetorheological dampers for rocking isolation of legged rigid cylindrical fluid tanks under base excitations has been proposed and investigated. First, dynamic equations of motion for the rocking rigid fluid tank are developed. Different semi-active classical and an online data-driven adaptive control technique are then employed to examine the efficacy of the rocking isolation system. Parameters of the data-driven controller are estimated online in real-time using the Recursive Least Squares approach, which offers simplicity, robustness against faults, and small memory requirements. Numerical simulations are compared with experimental investigations to validate the accuracy of the developed dynamic equations and the performance of the MR dampers and control techniques in mitigating the seismic effects on the examined fluid tank. The MR dampers and semi-active control strategies proved substantial reductions in the uplift displacement of the tank as one of the main causes of damage to these structures under earthquakes.</div></div>\",\"PeriodicalId\":50326,\"journal\":{\"name\":\"International Journal of Electrical Power & Energy Systems\",\"volume\":\"172 \",\"pages\":\"Article 111113\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Power & Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142061525006611\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061525006611","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

文献中对储液罐的地震防护机制进行了多种研究。这些结构在战略性产业的完整性、可靠性和安全性方面发挥着关键作用。对储罐的任何损坏都可能危及这些工业和环境。在本研究中,提出并研究了一种基于磁流变阻尼器的智能垂直隔振系统,用于隔振基座激励下的腿式刚性圆柱形储液罐。首先,建立了摇摆刚性储液箱的动力学方程。然后采用不同的半主动经典控制和在线数据驱动自适应控制技术来检验摇隔震系统的有效性。使用递归最小二乘方法在线实时估计数据驱动控制器的参数,该方法简单,对故障具有鲁棒性,并且内存要求小。数值模拟与实验研究进行了比较,以验证所建立的动力方程的准确性,以及MR阻尼器和控制技术在减轻被测储液罐地震影响方面的性能。磁流变阻尼器和半主动控制策略证明,在地震作用下,储罐的隆起位移是造成这些结构损坏的主要原因之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smart seismic rocking motion control of fluid tanks using semi-active model-based and data-driven adaptive control
Various mechanisms have been investigated in the literature for seismic protection of fluid tanks. These structures play a pivotal role in the integrity, reliability, and safety of strategic industries. Any damage to fluid tanks can jeopardise these industries and the environment. In this research, a Smart Vertical Isolation System using magnetorheological dampers for rocking isolation of legged rigid cylindrical fluid tanks under base excitations has been proposed and investigated. First, dynamic equations of motion for the rocking rigid fluid tank are developed. Different semi-active classical and an online data-driven adaptive control technique are then employed to examine the efficacy of the rocking isolation system. Parameters of the data-driven controller are estimated online in real-time using the Recursive Least Squares approach, which offers simplicity, robustness against faults, and small memory requirements. Numerical simulations are compared with experimental investigations to validate the accuracy of the developed dynamic equations and the performance of the MR dampers and control techniques in mitigating the seismic effects on the examined fluid tank. The MR dampers and semi-active control strategies proved substantial reductions in the uplift displacement of the tank as one of the main causes of damage to these structures under earthquakes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信