C*代数中的大C*多面体

IF 0.5 4区 数学 Q3 MATHEMATICS
Clayton Suguio Hida
{"title":"C*代数中的大C*多面体","authors":"Clayton Suguio Hida","doi":"10.1016/j.topol.2025.109598","DOIUrl":null,"url":null,"abstract":"<div><div>A classical polyhedron in a Banach space is a collection of points with a distinctive geometric separation property: each point in the set can be separated from the others by a closed convex set. This concept reflects the interplay between convexity and the geometry of Banach spaces. In this article, we introduce and study a noncommutative analogue of this notion, based on the concept of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-convexity, a generalization of classical convexity within the setting of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebras. We define the notion of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-polyhedron as a family of elements in a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra that satisfies a similar separation property with respect to closed <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-convex sets. Our main goal is to investigate the maximal possible cardinality of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-polyhedrons in various <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebras, with particular attention to classical examples from the theory of operator algebras, such as the algebras of compact and bounded operators on a Hilbert space.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"375 ","pages":"Article 109598"},"PeriodicalIF":0.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large C*-polyhedrons in C*-algebras\",\"authors\":\"Clayton Suguio Hida\",\"doi\":\"10.1016/j.topol.2025.109598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A classical polyhedron in a Banach space is a collection of points with a distinctive geometric separation property: each point in the set can be separated from the others by a closed convex set. This concept reflects the interplay between convexity and the geometry of Banach spaces. In this article, we introduce and study a noncommutative analogue of this notion, based on the concept of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-convexity, a generalization of classical convexity within the setting of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebras. We define the notion of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-polyhedron as a family of elements in a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra that satisfies a similar separation property with respect to closed <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-convex sets. Our main goal is to investigate the maximal possible cardinality of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-polyhedrons in various <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebras, with particular attention to classical examples from the theory of operator algebras, such as the algebras of compact and bounded operators on a Hilbert space.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"375 \",\"pages\":\"Article 109598\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864125003967\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125003967","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Banach空间中的经典多面体是具有独特几何分离性质的点的集合:集合中的每个点都可以通过封闭凸集与其他点分离。这个概念反映了巴拿赫空间的凸性和几何之间的相互作用。在这篇文章中,我们引入并研究了这个概念的一个非交换的类比,基于C -凸性的概念,在C -代数的集合中经典凸性的推广。我们将C -多面体的概念定义为C -代数中满足关于闭C -凸集的类似分离性质的元素族。我们的主要目标是研究各种C -代数中C -多面体的最大可能基数,特别注意算子代数理论中的经典例子,例如Hilbert空间上的紧算子和有界算子代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large C*-polyhedrons in C*-algebras
A classical polyhedron in a Banach space is a collection of points with a distinctive geometric separation property: each point in the set can be separated from the others by a closed convex set. This concept reflects the interplay between convexity and the geometry of Banach spaces. In this article, we introduce and study a noncommutative analogue of this notion, based on the concept of C-convexity, a generalization of classical convexity within the setting of C-algebras. We define the notion of a C-polyhedron as a family of elements in a C-algebra that satisfies a similar separation property with respect to closed C-convex sets. Our main goal is to investigate the maximal possible cardinality of C-polyhedrons in various C-algebras, with particular attention to classical examples from the theory of operator algebras, such as the algebras of compact and bounded operators on a Hilbert space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信