PMDS-YOLO:一种用于高效水产品检测的轻型多尺度检测器

IF 3.9 1区 农林科学 Q1 FISHERIES
Xiushuai Xu , Zhibin Xie , Ningsheng Wang , Peiyu Yan , Changbin Shao , Xin Shu , Jinbo Zhang
{"title":"PMDS-YOLO:一种用于高效水产品检测的轻型多尺度检测器","authors":"Xiushuai Xu ,&nbsp;Zhibin Xie ,&nbsp;Ningsheng Wang ,&nbsp;Peiyu Yan ,&nbsp;Changbin Shao ,&nbsp;Xin Shu ,&nbsp;Jinbo Zhang","doi":"10.1016/j.aquaculture.2025.743210","DOIUrl":null,"url":null,"abstract":"<div><div>Object detection is critical for smart aquaculture systems, yet current algorithms suffer from high-parameter models, low accuracy, and weak performance of small-target detection. For these challenges, we propose an aquatic products detection model PMDS-YOLO, dedicated to computational complexity reduction coupled with detection accuracy enhancement. First, the PMD (PConv-MDEMA) module is constructed. By cascading partial convolutions (PConv) with our proposed MDEMA (MLP-Drop path-EMA) mechanism, this structure substantially decreases model parameters and computational costs, concurrently attaining a marked enhancement in detection performance. Secondly, the MScat is designed to achieve multi-scale feature map fusion, enhancing detection capability. Meanwhile, the deep scale enhancement (DSE) model is designed to achieve collaborative optimization of cross-level features by establishing an interaction mechanism across hierarchical features. These designs enhance model robustness and make it better adapted to complex underwater scenarios. Finally, the shared fusion head (SFH) is proposed, improving detection accuracy while reducing the redundant computations. Simulation results show that PMDS-YOLO attains 84.8 % [email protected] performance on the URPC dataset, surpassing Faster-RCNN, SSD, EfficientDet-d0, RT-DETR-L YOLOv10n, YOLOv11n, YOLOv12n and YOLOv13n by 11.55 %, 9.4 %, 4.3 %, 4.9 %, 2 %, 1.4 %, 1.1 %, and 1.3 % respectively. Furthermore, experiments on RUOD and WSODD datasets confirm the superior generalization capability of PMDS-YOLO for underwater object detection tasks.</div></div>","PeriodicalId":8375,"journal":{"name":"Aquaculture","volume":"612 ","pages":"Article 743210"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PMDS-YOLO: A lightweight multi-scale detector for efficient aquatic product detection\",\"authors\":\"Xiushuai Xu ,&nbsp;Zhibin Xie ,&nbsp;Ningsheng Wang ,&nbsp;Peiyu Yan ,&nbsp;Changbin Shao ,&nbsp;Xin Shu ,&nbsp;Jinbo Zhang\",\"doi\":\"10.1016/j.aquaculture.2025.743210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Object detection is critical for smart aquaculture systems, yet current algorithms suffer from high-parameter models, low accuracy, and weak performance of small-target detection. For these challenges, we propose an aquatic products detection model PMDS-YOLO, dedicated to computational complexity reduction coupled with detection accuracy enhancement. First, the PMD (PConv-MDEMA) module is constructed. By cascading partial convolutions (PConv) with our proposed MDEMA (MLP-Drop path-EMA) mechanism, this structure substantially decreases model parameters and computational costs, concurrently attaining a marked enhancement in detection performance. Secondly, the MScat is designed to achieve multi-scale feature map fusion, enhancing detection capability. Meanwhile, the deep scale enhancement (DSE) model is designed to achieve collaborative optimization of cross-level features by establishing an interaction mechanism across hierarchical features. These designs enhance model robustness and make it better adapted to complex underwater scenarios. Finally, the shared fusion head (SFH) is proposed, improving detection accuracy while reducing the redundant computations. Simulation results show that PMDS-YOLO attains 84.8 % [email protected] performance on the URPC dataset, surpassing Faster-RCNN, SSD, EfficientDet-d0, RT-DETR-L YOLOv10n, YOLOv11n, YOLOv12n and YOLOv13n by 11.55 %, 9.4 %, 4.3 %, 4.9 %, 2 %, 1.4 %, 1.1 %, and 1.3 % respectively. Furthermore, experiments on RUOD and WSODD datasets confirm the superior generalization capability of PMDS-YOLO for underwater object detection tasks.</div></div>\",\"PeriodicalId\":8375,\"journal\":{\"name\":\"Aquaculture\",\"volume\":\"612 \",\"pages\":\"Article 743210\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0044848625010968\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0044848625010968","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

摘要

目标检测对智能水产养殖系统至关重要,但目前的算法存在模型参数高、精度低、小目标检测性能差等问题。针对这些挑战,我们提出了一个水产品检测模型PMDS-YOLO,致力于降低计算复杂度和提高检测精度。首先,构建PMD (pconva - mdema)模块。通过将部分卷积(PConv)与我们提出的MDEMA (MLP-Drop path-EMA)机制级联,该结构大大降低了模型参数和计算成本,同时显著提高了检测性能。其次,实现多尺度特征图融合,增强检测能力;同时,设计深度尺度增强(deep scale enhancement, DSE)模型,通过建立跨层次特征的交互机制,实现跨层次特征的协同优化。这些设计增强了模型的稳健性,使其更好地适应复杂的水下场景。最后,提出了共享融合头(SFH),提高了检测精度,减少了冗余计算。仿真结果表明,PMDS-YOLO在URPC数据集上的[email protected]性能达到84.8%,比Faster-RCNN、SSD、EfficientDet-d0、RT-DETR-L YOLOv10n、YOLOv11n、YOLOv12n和YOLOv13n分别高出11.55%、9.4%、4.3%、4.9%、2%、1.4%、1.1%和1.3%。此外,在RUOD和WSODD数据集上的实验验证了PMDS-YOLO在水下目标检测任务中的卓越泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PMDS-YOLO: A lightweight multi-scale detector for efficient aquatic product detection
Object detection is critical for smart aquaculture systems, yet current algorithms suffer from high-parameter models, low accuracy, and weak performance of small-target detection. For these challenges, we propose an aquatic products detection model PMDS-YOLO, dedicated to computational complexity reduction coupled with detection accuracy enhancement. First, the PMD (PConv-MDEMA) module is constructed. By cascading partial convolutions (PConv) with our proposed MDEMA (MLP-Drop path-EMA) mechanism, this structure substantially decreases model parameters and computational costs, concurrently attaining a marked enhancement in detection performance. Secondly, the MScat is designed to achieve multi-scale feature map fusion, enhancing detection capability. Meanwhile, the deep scale enhancement (DSE) model is designed to achieve collaborative optimization of cross-level features by establishing an interaction mechanism across hierarchical features. These designs enhance model robustness and make it better adapted to complex underwater scenarios. Finally, the shared fusion head (SFH) is proposed, improving detection accuracy while reducing the redundant computations. Simulation results show that PMDS-YOLO attains 84.8 % [email protected] performance on the URPC dataset, surpassing Faster-RCNN, SSD, EfficientDet-d0, RT-DETR-L YOLOv10n, YOLOv11n, YOLOv12n and YOLOv13n by 11.55 %, 9.4 %, 4.3 %, 4.9 %, 2 %, 1.4 %, 1.1 %, and 1.3 % respectively. Furthermore, experiments on RUOD and WSODD datasets confirm the superior generalization capability of PMDS-YOLO for underwater object detection tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquaculture
Aquaculture 农林科学-海洋与淡水生物学
CiteScore
8.60
自引率
17.80%
发文量
1246
审稿时长
56 days
期刊介绍: Aquaculture is an international journal for the exploration, improvement and management of all freshwater and marine food resources. It publishes novel and innovative research of world-wide interest on farming of aquatic organisms, which includes finfish, mollusks, crustaceans and aquatic plants for human consumption. Research on ornamentals is not a focus of the Journal. Aquaculture only publishes papers with a clear relevance to improving aquaculture practices or a potential application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信