{"title":"多酚功能化金属有机框架:晚期癌症药物传递和协同治疗的战略平台","authors":"Alireza Hashemzadeh , Yasir Qasim Almajidi , Maher Abdulrazzaq Al-Hakeem , Chou-Yi Hsu , Prakhar Tomar , Ahmed Hjazi , Wesam R. Kadhum , Abdul_Kareem Nasir , Hayder Ridha-Salman , Mohammad Ehsan Taghavizadeh Yazdi","doi":"10.1016/j.materresbull.2025.113778","DOIUrl":null,"url":null,"abstract":"<div><div>Polyphenol-functionalized metal-organic frameworks (MOFs) have emerged as a revolutionary paradigm in cancer therapeutics, combining the structural versatility of MOFs with the bioactive and multifunctional properties of polyphenols. This review comprehensively analyzes recent advancements in the design, synthesis, and biomedical applications of polyphenol-MOF hybrids for targeted drug delivery and synergistic cancer therapy. By leveraging polyphenols such as tannic acid, epigallocatechin gallate (EGCG), gallic acid, and polydopamine, these hybrid systems exhibit enhanced biocompatibility, pH-responsive drug release, and tumor-targeting capabilities. Key innovations include the integration of polyphenol coatings or coordination networks with MOFs (e.g., ZIF-8, MIL-100, UiO-66) to enable stimuli-triggered cargo release, reactive oxygen species (ROS) generation, and multimodal therapeutic effects (chemodynamic, photothermal, and sonodynamic therapy). Case studies highlight the role of polyphenol-MOF hybrids in overcoming limitations of conventional chemotherapy, such as poor drug solubility, off-target toxicity, and multidrug resistance. Furthermore, in vitro and in vivo evaluations demonstrate their efficacy in inducing apoptosis, depleting glutathione (GSH), and enhancing immunotherapy responses. Challenges such as scalability, long-term biosafety, and clinical translation are critically discussed, alongside future directions for engineering next-generation polyphenol-MOF nanoplatforms. This review underscores the transformative potential of polyphenol-MOF hybrids in precision oncology and advocates for their integration into mainstream cancer treatment strategies.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"194 ","pages":"Article 113778"},"PeriodicalIF":5.7000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyphenol-functionalized metal-organic frameworks: A strategic platform for advanced cancer drug delivery and synergistic therapy\",\"authors\":\"Alireza Hashemzadeh , Yasir Qasim Almajidi , Maher Abdulrazzaq Al-Hakeem , Chou-Yi Hsu , Prakhar Tomar , Ahmed Hjazi , Wesam R. Kadhum , Abdul_Kareem Nasir , Hayder Ridha-Salman , Mohammad Ehsan Taghavizadeh Yazdi\",\"doi\":\"10.1016/j.materresbull.2025.113778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polyphenol-functionalized metal-organic frameworks (MOFs) have emerged as a revolutionary paradigm in cancer therapeutics, combining the structural versatility of MOFs with the bioactive and multifunctional properties of polyphenols. This review comprehensively analyzes recent advancements in the design, synthesis, and biomedical applications of polyphenol-MOF hybrids for targeted drug delivery and synergistic cancer therapy. By leveraging polyphenols such as tannic acid, epigallocatechin gallate (EGCG), gallic acid, and polydopamine, these hybrid systems exhibit enhanced biocompatibility, pH-responsive drug release, and tumor-targeting capabilities. Key innovations include the integration of polyphenol coatings or coordination networks with MOFs (e.g., ZIF-8, MIL-100, UiO-66) to enable stimuli-triggered cargo release, reactive oxygen species (ROS) generation, and multimodal therapeutic effects (chemodynamic, photothermal, and sonodynamic therapy). Case studies highlight the role of polyphenol-MOF hybrids in overcoming limitations of conventional chemotherapy, such as poor drug solubility, off-target toxicity, and multidrug resistance. Furthermore, in vitro and in vivo evaluations demonstrate their efficacy in inducing apoptosis, depleting glutathione (GSH), and enhancing immunotherapy responses. Challenges such as scalability, long-term biosafety, and clinical translation are critically discussed, alongside future directions for engineering next-generation polyphenol-MOF nanoplatforms. This review underscores the transformative potential of polyphenol-MOF hybrids in precision oncology and advocates for their integration into mainstream cancer treatment strategies.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"194 \",\"pages\":\"Article 113778\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540825004854\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825004854","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Polyphenol-functionalized metal-organic frameworks: A strategic platform for advanced cancer drug delivery and synergistic therapy
Polyphenol-functionalized metal-organic frameworks (MOFs) have emerged as a revolutionary paradigm in cancer therapeutics, combining the structural versatility of MOFs with the bioactive and multifunctional properties of polyphenols. This review comprehensively analyzes recent advancements in the design, synthesis, and biomedical applications of polyphenol-MOF hybrids for targeted drug delivery and synergistic cancer therapy. By leveraging polyphenols such as tannic acid, epigallocatechin gallate (EGCG), gallic acid, and polydopamine, these hybrid systems exhibit enhanced biocompatibility, pH-responsive drug release, and tumor-targeting capabilities. Key innovations include the integration of polyphenol coatings or coordination networks with MOFs (e.g., ZIF-8, MIL-100, UiO-66) to enable stimuli-triggered cargo release, reactive oxygen species (ROS) generation, and multimodal therapeutic effects (chemodynamic, photothermal, and sonodynamic therapy). Case studies highlight the role of polyphenol-MOF hybrids in overcoming limitations of conventional chemotherapy, such as poor drug solubility, off-target toxicity, and multidrug resistance. Furthermore, in vitro and in vivo evaluations demonstrate their efficacy in inducing apoptosis, depleting glutathione (GSH), and enhancing immunotherapy responses. Challenges such as scalability, long-term biosafety, and clinical translation are critically discussed, alongside future directions for engineering next-generation polyphenol-MOF nanoplatforms. This review underscores the transformative potential of polyphenol-MOF hybrids in precision oncology and advocates for their integration into mainstream cancer treatment strategies.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.