Sabrina Gacem , Estefanía Paredes , Sara Campos , Francisco Sevilla , Carles Soler , Jesús Yániz , Anthony Valverde , Miguel A. Silvestre
{"title":"标准化CASA分析准确评价海胆卵泡旁精子活力","authors":"Sabrina Gacem , Estefanía Paredes , Sara Campos , Francisco Sevilla , Carles Soler , Jesús Yániz , Anthony Valverde , Miguel A. Silvestre","doi":"10.1016/j.aquaculture.2025.743197","DOIUrl":null,"url":null,"abstract":"<div><div>Although computer-assisted sperm analysis (CASA) system is widely applied for evaluating sperm motility in numerous vertebrate species, its application to sea urchin sperm remains comparatively underexplored, with limited data available on this invertebrate model. This study aimed to standardize the frame rate, type of counting chambers, extender, and dilution rate to use CASA system to evaluate sea urchin sperm motility. Semen samples were collected and diluted in artificial sea water alone (ASW) or supplemented with 0.3 % serum bovine albumin (ASW-BSA). The diluted semen was filled in 4 chamber types: drop displacement, Spermtrack® (SK) and R2D10 (R2); and capillary, Kubus® (KU); and SpermLide® (SL). Three dilutions ranging from low to high were studied. Sperm motility was evaluated using a commercial CASA system (AI Station v1.2; Sperm Analysis Technologies S.L., Buñol, Spain) that employs artificial intelligence for sperm recognition. Spermatozoa were immotile in drop displacement chambers when diluted in ASW; however total motility (TMOT) and progressivity (PMOT) did not differ significantly across chamber types when semen was diluted in ASW-BSA, independently of filling chamber type. KU chamber showed significantly higher velocity parameters compared to SL chamber when semen was diluted in ASW. However, these differences disappeared when in ASW-BSA medium, and straight line velocity (VSL) was even significantly higher in SL chamber. As dilution increased (i.e., lower cell concentration), sperm velocity increased, and linearity decreased. The optimal frame rate for accurate measurement of curvilinear velocity (VCL) was 510 fps, whereas lower frame rates (< 360 fps) were sufficient for evaluating VSL and average path velocity (VAP). In conclusion, to optimally assess sea urchin sperm motility using CASA requires a frame rate of 510 fps, dilution in ASW-BSA to concentrations below 75 × 10<sup>6</sup> sperm/mL and using capillary-filling chambers.</div></div>","PeriodicalId":8375,"journal":{"name":"Aquaculture","volume":"612 ","pages":"Article 743197"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Standardizing CASA analysis to accurately assess sea urchin Paracentrotus lividus sperm motility\",\"authors\":\"Sabrina Gacem , Estefanía Paredes , Sara Campos , Francisco Sevilla , Carles Soler , Jesús Yániz , Anthony Valverde , Miguel A. Silvestre\",\"doi\":\"10.1016/j.aquaculture.2025.743197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although computer-assisted sperm analysis (CASA) system is widely applied for evaluating sperm motility in numerous vertebrate species, its application to sea urchin sperm remains comparatively underexplored, with limited data available on this invertebrate model. This study aimed to standardize the frame rate, type of counting chambers, extender, and dilution rate to use CASA system to evaluate sea urchin sperm motility. Semen samples were collected and diluted in artificial sea water alone (ASW) or supplemented with 0.3 % serum bovine albumin (ASW-BSA). The diluted semen was filled in 4 chamber types: drop displacement, Spermtrack® (SK) and R2D10 (R2); and capillary, Kubus® (KU); and SpermLide® (SL). Three dilutions ranging from low to high were studied. Sperm motility was evaluated using a commercial CASA system (AI Station v1.2; Sperm Analysis Technologies S.L., Buñol, Spain) that employs artificial intelligence for sperm recognition. Spermatozoa were immotile in drop displacement chambers when diluted in ASW; however total motility (TMOT) and progressivity (PMOT) did not differ significantly across chamber types when semen was diluted in ASW-BSA, independently of filling chamber type. KU chamber showed significantly higher velocity parameters compared to SL chamber when semen was diluted in ASW. However, these differences disappeared when in ASW-BSA medium, and straight line velocity (VSL) was even significantly higher in SL chamber. As dilution increased (i.e., lower cell concentration), sperm velocity increased, and linearity decreased. The optimal frame rate for accurate measurement of curvilinear velocity (VCL) was 510 fps, whereas lower frame rates (< 360 fps) were sufficient for evaluating VSL and average path velocity (VAP). In conclusion, to optimally assess sea urchin sperm motility using CASA requires a frame rate of 510 fps, dilution in ASW-BSA to concentrations below 75 × 10<sup>6</sup> sperm/mL and using capillary-filling chambers.</div></div>\",\"PeriodicalId\":8375,\"journal\":{\"name\":\"Aquaculture\",\"volume\":\"612 \",\"pages\":\"Article 743197\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004484862501083X\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004484862501083X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
Standardizing CASA analysis to accurately assess sea urchin Paracentrotus lividus sperm motility
Although computer-assisted sperm analysis (CASA) system is widely applied for evaluating sperm motility in numerous vertebrate species, its application to sea urchin sperm remains comparatively underexplored, with limited data available on this invertebrate model. This study aimed to standardize the frame rate, type of counting chambers, extender, and dilution rate to use CASA system to evaluate sea urchin sperm motility. Semen samples were collected and diluted in artificial sea water alone (ASW) or supplemented with 0.3 % serum bovine albumin (ASW-BSA). The diluted semen was filled in 4 chamber types: drop displacement, Spermtrack® (SK) and R2D10 (R2); and capillary, Kubus® (KU); and SpermLide® (SL). Three dilutions ranging from low to high were studied. Sperm motility was evaluated using a commercial CASA system (AI Station v1.2; Sperm Analysis Technologies S.L., Buñol, Spain) that employs artificial intelligence for sperm recognition. Spermatozoa were immotile in drop displacement chambers when diluted in ASW; however total motility (TMOT) and progressivity (PMOT) did not differ significantly across chamber types when semen was diluted in ASW-BSA, independently of filling chamber type. KU chamber showed significantly higher velocity parameters compared to SL chamber when semen was diluted in ASW. However, these differences disappeared when in ASW-BSA medium, and straight line velocity (VSL) was even significantly higher in SL chamber. As dilution increased (i.e., lower cell concentration), sperm velocity increased, and linearity decreased. The optimal frame rate for accurate measurement of curvilinear velocity (VCL) was 510 fps, whereas lower frame rates (< 360 fps) were sufficient for evaluating VSL and average path velocity (VAP). In conclusion, to optimally assess sea urchin sperm motility using CASA requires a frame rate of 510 fps, dilution in ASW-BSA to concentrations below 75 × 106 sperm/mL and using capillary-filling chambers.
期刊介绍:
Aquaculture is an international journal for the exploration, improvement and management of all freshwater and marine food resources. It publishes novel and innovative research of world-wide interest on farming of aquatic organisms, which includes finfish, mollusks, crustaceans and aquatic plants for human consumption. Research on ornamentals is not a focus of the Journal. Aquaculture only publishes papers with a clear relevance to improving aquaculture practices or a potential application.