全硫系输运层可实现高效、稳定的FAPbI3钙钛矿太阳能电池

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Sanaa Ammari , Mohamed Alla , Naoufal Ennouhi , Boubker Fares
{"title":"全硫系输运层可实现高效、稳定的FAPbI3钙钛矿太阳能电池","authors":"Sanaa Ammari ,&nbsp;Mohamed Alla ,&nbsp;Naoufal Ennouhi ,&nbsp;Boubker Fares","doi":"10.1016/j.solener.2025.113993","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite solar cells (PSCs) are now recognized as pivotal in photovoltaic research that combine high power conversion efficiency with cost-effective fabrication processes. However, commercial deployment of this technology is still hindered by the standard electron-transport material (ETM) TiO<sub>2</sub> and the hole-transport material (HTM) Spiro-OMeTAD, which suffer from stability, performance, and cost issues. In the present work, we use SCAPS-1D simulations to explore a wide range of alternative transport layers for FA-based FAPbI<sub>3</sub> devices. After validating our model by reproducing the 25.6 % efficiency of a TiO<sub>2</sub>/Spiro-OMeTAD reference cell, we systematically evaluated a broad range of ETLs and HTLs and analysed their influence on device performance. The pairing of WS<sub>2</sub> as the electron transport layer and CuGaSe<sub>2</sub> (CGSe) as the hole transport layer emerged as the most effective combination, delivering better energy-level alignment, higher charge mobility, and lower recombination without altering the active layer. Once optimized, this WS<sub>2</sub>/CGSe architecture increased the simulated power conversion efficiency to more than 26,55 %. Both materials can be deposited at low temperatures via scalable methods, underscoring their potential as stable, cost-effective transport layers for next-generation PSCs.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"301 ","pages":"Article 113993"},"PeriodicalIF":6.0000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fully chalcogenide transport layers enable efficient, stable FAPbI3 perovskite solar cells\",\"authors\":\"Sanaa Ammari ,&nbsp;Mohamed Alla ,&nbsp;Naoufal Ennouhi ,&nbsp;Boubker Fares\",\"doi\":\"10.1016/j.solener.2025.113993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Perovskite solar cells (PSCs) are now recognized as pivotal in photovoltaic research that combine high power conversion efficiency with cost-effective fabrication processes. However, commercial deployment of this technology is still hindered by the standard electron-transport material (ETM) TiO<sub>2</sub> and the hole-transport material (HTM) Spiro-OMeTAD, which suffer from stability, performance, and cost issues. In the present work, we use SCAPS-1D simulations to explore a wide range of alternative transport layers for FA-based FAPbI<sub>3</sub> devices. After validating our model by reproducing the 25.6 % efficiency of a TiO<sub>2</sub>/Spiro-OMeTAD reference cell, we systematically evaluated a broad range of ETLs and HTLs and analysed their influence on device performance. The pairing of WS<sub>2</sub> as the electron transport layer and CuGaSe<sub>2</sub> (CGSe) as the hole transport layer emerged as the most effective combination, delivering better energy-level alignment, higher charge mobility, and lower recombination without altering the active layer. Once optimized, this WS<sub>2</sub>/CGSe architecture increased the simulated power conversion efficiency to more than 26,55 %. Both materials can be deposited at low temperatures via scalable methods, underscoring their potential as stable, cost-effective transport layers for next-generation PSCs.</div></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":\"301 \",\"pages\":\"Article 113993\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X2500756X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X2500756X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

钙钛矿太阳能电池(PSCs)目前被认为是光伏研究的关键,它结合了高功率转换效率和低成本的制造工艺。然而,该技术的商业部署仍然受到标准电子传输材料(ETM) TiO2和空穴传输材料(HTM) Spiro-OMeTAD的阻碍,这些材料存在稳定性、性能和成本问题。在目前的工作中,我们使用SCAPS-1D模拟来探索基于fa的FAPbI3器件的各种替代传输层。通过再现TiO2/Spiro-OMeTAD基准电池25.6%的效率来验证我们的模型后,我们系统地评估了广泛的etl和htl,并分析了它们对器件性能的影响。WS2作为电子传输层和CuGaSe2 (CGSe)作为空穴传输层的配对是最有效的组合,在不改变有源层的情况下,具有更好的能级排列,更高的电荷迁移率和更低的复合。经过优化后,该WS2/CGSe架构将模拟功率转换效率提高到26.55%以上。这两种材料都可以通过可扩展的方法在低温下沉积,强调了它们作为下一代psc稳定、经济的传输层的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fully chalcogenide transport layers enable efficient, stable FAPbI3 perovskite solar cells
Perovskite solar cells (PSCs) are now recognized as pivotal in photovoltaic research that combine high power conversion efficiency with cost-effective fabrication processes. However, commercial deployment of this technology is still hindered by the standard electron-transport material (ETM) TiO2 and the hole-transport material (HTM) Spiro-OMeTAD, which suffer from stability, performance, and cost issues. In the present work, we use SCAPS-1D simulations to explore a wide range of alternative transport layers for FA-based FAPbI3 devices. After validating our model by reproducing the 25.6 % efficiency of a TiO2/Spiro-OMeTAD reference cell, we systematically evaluated a broad range of ETLs and HTLs and analysed their influence on device performance. The pairing of WS2 as the electron transport layer and CuGaSe2 (CGSe) as the hole transport layer emerged as the most effective combination, delivering better energy-level alignment, higher charge mobility, and lower recombination without altering the active layer. Once optimized, this WS2/CGSe architecture increased the simulated power conversion efficiency to more than 26,55 %. Both materials can be deposited at low temperatures via scalable methods, underscoring their potential as stable, cost-effective transport layers for next-generation PSCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信