正则元素的Lusztig变种

IF 0.8 2区 数学 Q2 MATHEMATICS
Xuhua He, Ruben La
{"title":"正则元素的Lusztig变种","authors":"Xuhua He,&nbsp;Ruben La","doi":"10.1016/j.jalgebra.2025.09.008","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> be a connected reductive group over an algebraically closed field. Let <em>B</em> be a Borel subgroup of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <em>W</em> be the associated Weyl group. We show that for any <span><math><mi>w</mi><mo>∈</mo><mi>W</mi></math></span> that is not contained in any standard parabolic subgroup of <em>W</em>, the intersection of the Bruhat cell <em>BwB</em> with any regular conjugacy class of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is always irreducible. We then prove that the associated Lusztig varieties are irreducible. This extends the previous work of Kim <span><span>[7]</span></span> on the regular semisimple and regular unipotent elements. The irreducibility result of Lusztig varieties will be used in an upcoming work in the study of affine Lusztig varieties.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"686 ","pages":"Pages 845-853"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lusztig varieties for regular elements\",\"authors\":\"Xuhua He,&nbsp;Ruben La\",\"doi\":\"10.1016/j.jalgebra.2025.09.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> be a connected reductive group over an algebraically closed field. Let <em>B</em> be a Borel subgroup of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and <em>W</em> be the associated Weyl group. We show that for any <span><math><mi>w</mi><mo>∈</mo><mi>W</mi></math></span> that is not contained in any standard parabolic subgroup of <em>W</em>, the intersection of the Bruhat cell <em>BwB</em> with any regular conjugacy class of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is always irreducible. We then prove that the associated Lusztig varieties are irreducible. This extends the previous work of Kim <span><span>[7]</span></span> on the regular semisimple and regular unipotent elements. The irreducibility result of Lusztig varieties will be used in an upcoming work in the study of affine Lusztig varieties.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"686 \",\"pages\":\"Pages 845-853\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325005332\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005332","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G0是代数闭域上的连通约化群。设B为G0的Borel子群,W为相关联的Weyl群。证明了对于不包含在w的任何标准抛物子群中的任意w∈w, Bruhat元BwB与任意正则共轭类G0的交总是不可约的。然后我们证明了相关的Lusztig变量是不可约的。这扩展了Kim[7]先前关于正则半单元和正则单元的工作。Lusztig品种的不可约性结果将在今后对仿射Lusztig品种的研究中得到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lusztig varieties for regular elements
Let G0 be a connected reductive group over an algebraically closed field. Let B be a Borel subgroup of G0 and W be the associated Weyl group. We show that for any wW that is not contained in any standard parabolic subgroup of W, the intersection of the Bruhat cell BwB with any regular conjugacy class of G0 is always irreducible. We then prove that the associated Lusztig varieties are irreducible. This extends the previous work of Kim [7] on the regular semisimple and regular unipotent elements. The irreducibility result of Lusztig varieties will be used in an upcoming work in the study of affine Lusztig varieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信