Mohammad Javad Javid-Naderi , Seyed Ali Mousavi Shaegh
{"title":"制备固体脂质纳米颗粒的先进微流体技术:创新和生物医学应用","authors":"Mohammad Javad Javid-Naderi , Seyed Ali Mousavi Shaegh","doi":"10.1016/j.ijpx.2025.100399","DOIUrl":null,"url":null,"abstract":"<div><div>Solid lipid nanoparticles (SLNs) represent a promising category of nanocarriers used in medicine and cosmetics, offering enhanced drug protection, controlled release, and targeted delivery for both hydrophilic and lipophilic compounds. Conventional preparation methods, such as high-pressure homogenization and solvent emulsification-evaporation, face several challenges, including increased polydispersity, scaling limitations, and the presence of hazardous residual solvents. Microfluidic technology has emerged as a novel approach for preparing SLNs, addressing issues such as variable particle sizes and residual solvents by facilitating enhanced control over particle dimensions, morphology, and encapsulation efficiency. Microfluidics enables rapid and uniform mixing through micro-scale fluid dynamics, resulting in the production of homogeneous nanoparticles with adjustable characteristics. The review examines key parameters in microfluidic SLN preparation and categorizes various microfluidic chip designs and mixing techniques in detail, illustrating their unique advantages in controlling nanoparticle properties. Furthermore, this article provides a comprehensive overview of microfluidic SLN preparation, emphasizing its advantages over conventional methods, and explores the transformative potential of SLNs for advancing drug delivery systems, cosmetic formulations, and diagnostics. The integration of artificial intelligence (AI) and machine learning to optimize synthesis conditions and enhance reproducibility and scalability for industrial translation are also discussed.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"10 ","pages":"Article 100399"},"PeriodicalIF":6.4000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced microfluidic techniques for the preparation of solid lipid nanoparticles: Innovations and biomedical applications\",\"authors\":\"Mohammad Javad Javid-Naderi , Seyed Ali Mousavi Shaegh\",\"doi\":\"10.1016/j.ijpx.2025.100399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solid lipid nanoparticles (SLNs) represent a promising category of nanocarriers used in medicine and cosmetics, offering enhanced drug protection, controlled release, and targeted delivery for both hydrophilic and lipophilic compounds. Conventional preparation methods, such as high-pressure homogenization and solvent emulsification-evaporation, face several challenges, including increased polydispersity, scaling limitations, and the presence of hazardous residual solvents. Microfluidic technology has emerged as a novel approach for preparing SLNs, addressing issues such as variable particle sizes and residual solvents by facilitating enhanced control over particle dimensions, morphology, and encapsulation efficiency. Microfluidics enables rapid and uniform mixing through micro-scale fluid dynamics, resulting in the production of homogeneous nanoparticles with adjustable characteristics. The review examines key parameters in microfluidic SLN preparation and categorizes various microfluidic chip designs and mixing techniques in detail, illustrating their unique advantages in controlling nanoparticle properties. Furthermore, this article provides a comprehensive overview of microfluidic SLN preparation, emphasizing its advantages over conventional methods, and explores the transformative potential of SLNs for advancing drug delivery systems, cosmetic formulations, and diagnostics. The integration of artificial intelligence (AI) and machine learning to optimize synthesis conditions and enhance reproducibility and scalability for industrial translation are also discussed.</div></div>\",\"PeriodicalId\":14280,\"journal\":{\"name\":\"International Journal of Pharmaceutics: X\",\"volume\":\"10 \",\"pages\":\"Article 100399\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Pharmaceutics: X\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590156725000842\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156725000842","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Advanced microfluidic techniques for the preparation of solid lipid nanoparticles: Innovations and biomedical applications
Solid lipid nanoparticles (SLNs) represent a promising category of nanocarriers used in medicine and cosmetics, offering enhanced drug protection, controlled release, and targeted delivery for both hydrophilic and lipophilic compounds. Conventional preparation methods, such as high-pressure homogenization and solvent emulsification-evaporation, face several challenges, including increased polydispersity, scaling limitations, and the presence of hazardous residual solvents. Microfluidic technology has emerged as a novel approach for preparing SLNs, addressing issues such as variable particle sizes and residual solvents by facilitating enhanced control over particle dimensions, morphology, and encapsulation efficiency. Microfluidics enables rapid and uniform mixing through micro-scale fluid dynamics, resulting in the production of homogeneous nanoparticles with adjustable characteristics. The review examines key parameters in microfluidic SLN preparation and categorizes various microfluidic chip designs and mixing techniques in detail, illustrating their unique advantages in controlling nanoparticle properties. Furthermore, this article provides a comprehensive overview of microfluidic SLN preparation, emphasizing its advantages over conventional methods, and explores the transformative potential of SLNs for advancing drug delivery systems, cosmetic formulations, and diagnostics. The integration of artificial intelligence (AI) and machine learning to optimize synthesis conditions and enhance reproducibility and scalability for industrial translation are also discussed.
期刊介绍:
International Journal of Pharmaceutics: X offers authors with high-quality research who want to publish in a gold open access journal the opportunity to make their work immediately, permanently, and freely accessible.
International Journal of Pharmaceutics: X authors will pay an article publishing charge (APC), have a choice of license options, and retain copyright. Please check the APC here. The journal is indexed in SCOPUS, PUBMED, PMC and DOAJ.
The International Journal of Pharmaceutics is the second most cited journal in the "Pharmacy & Pharmacology" category out of 358 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.