具有简并迁移率的曲面Cahn-Hilliard方程

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Charles M. Elliott, Thomas Sales
{"title":"具有简并迁移率的曲面Cahn-Hilliard方程","authors":"Charles M. Elliott,&nbsp;Thomas Sales","doi":"10.1016/j.nonrwa.2025.104481","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the existence of suitable weak solutions to the Cahn-Hilliard equation with a non-constant (degenerate) mobility on a class of evolving surfaces. We also show weak-strong uniqueness for the case of a positive mobility function, and under some further assumptions on the initial data we show uniqueness for a class of strong solutions for a degenerate mobility function.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104481"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The evolving surface Cahn–Hilliard equation with a degenerate mobility\",\"authors\":\"Charles M. Elliott,&nbsp;Thomas Sales\",\"doi\":\"10.1016/j.nonrwa.2025.104481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the existence of suitable weak solutions to the Cahn-Hilliard equation with a non-constant (degenerate) mobility on a class of evolving surfaces. We also show weak-strong uniqueness for the case of a positive mobility function, and under some further assumptions on the initial data we show uniqueness for a class of strong solutions for a degenerate mobility function.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"88 \",\"pages\":\"Article 104481\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825001671\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001671","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

考虑一类演化曲面上具有非常数(退化)迁移率的Cahn-Hilliard方程的弱解的存在性。我们还证明了正迁移函数的弱-强唯一性,并在初始数据的进一步假设下,证明了退化迁移函数的一类强解的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The evolving surface Cahn–Hilliard equation with a degenerate mobility
We consider the existence of suitable weak solutions to the Cahn-Hilliard equation with a non-constant (degenerate) mobility on a class of evolving surfaces. We also show weak-strong uniqueness for the case of a positive mobility function, and under some further assumptions on the initial data we show uniqueness for a class of strong solutions for a degenerate mobility function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信