H2与Jet-A1燃料分离对低旋流燃烧器火焰稳定性和污染物排放的影响

IF 5.2 2区 工程技术 Q2 ENERGY & FUELS
Samarjeet Singh , Matteo Amerighi , Nicola Scopolini , Antonio Andreini , Stefan R. Harth , Dimosthenis Trimis
{"title":"H2与Jet-A1燃料分离对低旋流燃烧器火焰稳定性和污染物排放的影响","authors":"Samarjeet Singh ,&nbsp;Matteo Amerighi ,&nbsp;Nicola Scopolini ,&nbsp;Antonio Andreini ,&nbsp;Stefan R. Harth ,&nbsp;Dimosthenis Trimis","doi":"10.1016/j.proci.2025.105858","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen combustion is emerging as a promising solution for future aircraft engines, offering a shift from fossil fuels to sustainable alternatives and the potential for reduced pollutant emissions. While the complete transition to <span><math><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> presents a significant challenge due to its low volumetric energy density, limited availability, and infrastructure and aircraft redesign constraints, fuel-flexible burner technologies that allow <span><math><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> blending with Jet-A1 offer a viable alternative. These technologies provide additional benefits such as an enhanced stability range and can contribute to achieving near-term decarbonization goals. This study explores the capabilities of a novel dual-fuel burner developed as part of the European project FFLECS (Novel Fuel-Flexible ultra-Low Emissions Combustion systems for Sustainable aviation). Flame stabilization in a lean lifted flame combustor operating under atmospheric conditions and fueled by Jet-A1 and <span><math><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> is experimentally investigated. A new fuel-flexible nozzle, based on the “low swirl” lean lifted flame concept, is developed to enable high premixing, significantly reducing <span><math><msub><mrow><mtext>NO</mtext></mrow><mrow><mtext>x</mtext></mrow></msub></math></span> emissions and minimizing flashback risk compared to conventional swirl-stabilized flames. The <span><math><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> injection for the investigated nozzle was optimized for part load conditions, but can still be operated up to <span><math><mrow><mn>100</mn><mtext>%</mtext><mspace></mspace><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>. The flame shape and lift-off height were studied at elevated air inlet temperature and <span><math><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> blending ratios up to 100% of the total thermal power. Moreover, the lean blowout limits remain similar for <span><math><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> blending ratios up to 30% across various air inlet temperatures but change significantly at higher blends. Finally, switching from Jet-A1 to <span><math><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> lowers <span><math><msub><mrow><mi>NO</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span> emission at low air inlet temperatures and increases it at higher temperatures, with a pronounced rise across all air inlet temperatures at blends above 75% <span><math><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> under elevated specific thermal power. In contrast, the <span><math><msub><mrow><mtext>NO</mtext></mrow><mrow><mtext>x</mtext></mrow></msub></math></span> emissions remain consistently very low at low specific power close to the lean blowout limit. Additionally, even a modest <span><math><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> fuel split of 15% significantly reduces CO emissions. These findings highlight the potential of <span><math><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> addition to lean lifted spray flame utilizing Jet-A1, facilitating the future development and optimization of fuel-flexible combustors for aircraft engines.</div></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"41 ","pages":"Article 105858"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of H2 and Jet-A1 fuel split on flame stability and pollutant emissions from low-swirl burner\",\"authors\":\"Samarjeet Singh ,&nbsp;Matteo Amerighi ,&nbsp;Nicola Scopolini ,&nbsp;Antonio Andreini ,&nbsp;Stefan R. Harth ,&nbsp;Dimosthenis Trimis\",\"doi\":\"10.1016/j.proci.2025.105858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogen combustion is emerging as a promising solution for future aircraft engines, offering a shift from fossil fuels to sustainable alternatives and the potential for reduced pollutant emissions. While the complete transition to <span><math><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> presents a significant challenge due to its low volumetric energy density, limited availability, and infrastructure and aircraft redesign constraints, fuel-flexible burner technologies that allow <span><math><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> blending with Jet-A1 offer a viable alternative. These technologies provide additional benefits such as an enhanced stability range and can contribute to achieving near-term decarbonization goals. This study explores the capabilities of a novel dual-fuel burner developed as part of the European project FFLECS (Novel Fuel-Flexible ultra-Low Emissions Combustion systems for Sustainable aviation). Flame stabilization in a lean lifted flame combustor operating under atmospheric conditions and fueled by Jet-A1 and <span><math><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> is experimentally investigated. A new fuel-flexible nozzle, based on the “low swirl” lean lifted flame concept, is developed to enable high premixing, significantly reducing <span><math><msub><mrow><mtext>NO</mtext></mrow><mrow><mtext>x</mtext></mrow></msub></math></span> emissions and minimizing flashback risk compared to conventional swirl-stabilized flames. The <span><math><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> injection for the investigated nozzle was optimized for part load conditions, but can still be operated up to <span><math><mrow><mn>100</mn><mtext>%</mtext><mspace></mspace><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>. The flame shape and lift-off height were studied at elevated air inlet temperature and <span><math><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> blending ratios up to 100% of the total thermal power. Moreover, the lean blowout limits remain similar for <span><math><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> blending ratios up to 30% across various air inlet temperatures but change significantly at higher blends. Finally, switching from Jet-A1 to <span><math><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> lowers <span><math><msub><mrow><mi>NO</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span> emission at low air inlet temperatures and increases it at higher temperatures, with a pronounced rise across all air inlet temperatures at blends above 75% <span><math><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> under elevated specific thermal power. In contrast, the <span><math><msub><mrow><mtext>NO</mtext></mrow><mrow><mtext>x</mtext></mrow></msub></math></span> emissions remain consistently very low at low specific power close to the lean blowout limit. Additionally, even a modest <span><math><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> fuel split of 15% significantly reduces CO emissions. These findings highlight the potential of <span><math><msub><mrow><mtext>H</mtext></mrow><mrow><mn>2</mn></mrow></msub></math></span> addition to lean lifted spray flame utilizing Jet-A1, facilitating the future development and optimization of fuel-flexible combustors for aircraft engines.</div></div>\",\"PeriodicalId\":408,\"journal\":{\"name\":\"Proceedings of the Combustion Institute\",\"volume\":\"41 \",\"pages\":\"Article 105858\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Combustion Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1540748925000720\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1540748925000720","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

氢燃烧正在成为未来飞机发动机的一种有希望的解决方案,它提供了从化石燃料到可持续替代品的转变,并有可能减少污染物排放。由于体积能量密度低、可用性有限以及基础设施和飞机重新设计的限制,完全过渡到H2存在重大挑战,但允许H2与Jet-A1混合的燃料柔性燃烧器技术提供了一种可行的替代方案。这些技术提供了额外的好处,例如增强了稳定范围,并有助于实现近期的脱碳目标。这项研究探索了一种新型双燃料燃烧器的性能,该燃烧器是欧洲项目FFLECS(可持续航空新型燃料柔性超低排放燃烧系统)的一部分。实验研究了常压条件下以Jet-A1和H2为燃料的稀薄提升火焰燃烧室的火焰稳定性。与传统的涡流稳定火焰相比,一种基于“低涡流”精益提升火焰概念的新型燃料柔性喷嘴能够实现高预混,显著减少氮氧化物排放,并最大限度地降低闪回风险。所研究的喷嘴的H2喷射针对部分负载条件进行了优化,但仍然可以运行到100%H2。研究了在提高进气温度和H2混合比达到总热功率100%时火焰形状和起飞高度。此外,在不同的进气温度下,当H2混合比达到30%时,排气极限仍然相似,但在更高的混合温度下,排气极限发生了显著变化。最后,从Jet-A1切换到H2可以降低低进气温度下的NOx排放,并在较高温度下增加NOx排放,在比热功率升高的情况下,当混合物H2超过75%时,所有进气温度都明显升高。相比之下,在低比功率下,氮氧化物排放量一直保持在非常低的水平,接近贫爆极限。此外,即使是适度的氢气燃料分解15%,也能显著减少CO排放。这些发现突出了利用Jet-A1在稀薄提升喷雾火焰中添加H2的潜力,促进了未来航空发动机燃料柔性燃烧室的开发和优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of H2 and Jet-A1 fuel split on flame stability and pollutant emissions from low-swirl burner
Hydrogen combustion is emerging as a promising solution for future aircraft engines, offering a shift from fossil fuels to sustainable alternatives and the potential for reduced pollutant emissions. While the complete transition to H2 presents a significant challenge due to its low volumetric energy density, limited availability, and infrastructure and aircraft redesign constraints, fuel-flexible burner technologies that allow H2 blending with Jet-A1 offer a viable alternative. These technologies provide additional benefits such as an enhanced stability range and can contribute to achieving near-term decarbonization goals. This study explores the capabilities of a novel dual-fuel burner developed as part of the European project FFLECS (Novel Fuel-Flexible ultra-Low Emissions Combustion systems for Sustainable aviation). Flame stabilization in a lean lifted flame combustor operating under atmospheric conditions and fueled by Jet-A1 and H2 is experimentally investigated. A new fuel-flexible nozzle, based on the “low swirl” lean lifted flame concept, is developed to enable high premixing, significantly reducing NOx emissions and minimizing flashback risk compared to conventional swirl-stabilized flames. The H2 injection for the investigated nozzle was optimized for part load conditions, but can still be operated up to 100%H2. The flame shape and lift-off height were studied at elevated air inlet temperature and H2 blending ratios up to 100% of the total thermal power. Moreover, the lean blowout limits remain similar for H2 blending ratios up to 30% across various air inlet temperatures but change significantly at higher blends. Finally, switching from Jet-A1 to H2 lowers NOx emission at low air inlet temperatures and increases it at higher temperatures, with a pronounced rise across all air inlet temperatures at blends above 75% H2 under elevated specific thermal power. In contrast, the NOx emissions remain consistently very low at low specific power close to the lean blowout limit. Additionally, even a modest H2 fuel split of 15% significantly reduces CO emissions. These findings highlight the potential of H2 addition to lean lifted spray flame utilizing Jet-A1, facilitating the future development and optimization of fuel-flexible combustors for aircraft engines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the Combustion Institute
Proceedings of the Combustion Institute 工程技术-工程:化工
CiteScore
7.00
自引率
0.00%
发文量
420
审稿时长
3.0 months
期刊介绍: The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review. Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信