自旋受挫卤化物双钙钛矿的磁结构转变

IF 7 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Kunpot Mopoung, , , Quanzheng Tao, , , Fabio Orlandi, , , Kingshuk Mukhuti, , , Kilian S. Ramsamoedj, , , Utkarsh Singh, , , Sakarn Khamkaeo, , , Muyi Zhang, , , Maarten W. de Dreu, , , Elvina Dilmieva, , , Emily L. Q. N. Ammerlaan, , , Thom Ottenbros, , , Steffen Wiedmann, , , Andrew T. Boothroyd, , , Peter C. M. Christianen, , , Sergei I. Simak, , , Johanna Rosen, , , Feng Gao, , , Irina A. Buyanova, , , Weimin M. Chen*, , and , Yuttapoom Puttisong*, 
{"title":"自旋受挫卤化物双钙钛矿的磁结构转变","authors":"Kunpot Mopoung,&nbsp;, ,&nbsp;Quanzheng Tao,&nbsp;, ,&nbsp;Fabio Orlandi,&nbsp;, ,&nbsp;Kingshuk Mukhuti,&nbsp;, ,&nbsp;Kilian S. Ramsamoedj,&nbsp;, ,&nbsp;Utkarsh Singh,&nbsp;, ,&nbsp;Sakarn Khamkaeo,&nbsp;, ,&nbsp;Muyi Zhang,&nbsp;, ,&nbsp;Maarten W. de Dreu,&nbsp;, ,&nbsp;Elvina Dilmieva,&nbsp;, ,&nbsp;Emily L. Q. N. Ammerlaan,&nbsp;, ,&nbsp;Thom Ottenbros,&nbsp;, ,&nbsp;Steffen Wiedmann,&nbsp;, ,&nbsp;Andrew T. Boothroyd,&nbsp;, ,&nbsp;Peter C. M. Christianen,&nbsp;, ,&nbsp;Sergei I. Simak,&nbsp;, ,&nbsp;Johanna Rosen,&nbsp;, ,&nbsp;Feng Gao,&nbsp;, ,&nbsp;Irina A. Buyanova,&nbsp;, ,&nbsp;Weimin M. Chen*,&nbsp;, and ,&nbsp;Yuttapoom Puttisong*,&nbsp;","doi":"10.1021/acs.chemmater.5c00610","DOIUrl":null,"url":null,"abstract":"<p >Geometrical frustration in the face-centered-cubic (fcc) lattice presents a fundamental challenge in determining antiferromagnetic order, as the ground state is highly sensitive to subtle differences in competing magnetic interactions and structural symmetry. Here, we explore the magnetostructural interplay in two halide double perovskites, Cs<sub>2</sub>NaFeCl<sub>6</sub> and Cs<sub>2</sub>AgFeCl<sub>6</sub>. Although both materials have a cubic structure at room temperature, neutron diffraction shows that they adopt different antiferromagnetic structures upon cooling. Cs<sub>2</sub>NaFeCl<sub>6</sub> experiences a transition to an AFM-III order below 2.6 K, governed by <i>J</i><sub>1</sub> and <i>J</i><sub>2</sub> (first and second nearest-neighbor) magnetic exchange interactions. Cs<sub>2</sub>AgFeCl<sub>6</sub>, however, adopts an AFM-I order below 17 K, accompanied by a significant tetragonal distortion confirmed from both neutron diffraction and polarized Raman spectroscopy. Thermal expansion measurements reveal anomalous lattice expansion at the magnetic transitions in both compounds but are substantially stronger in Cs<sub>2</sub>AgFeCl<sub>6</sub>. Combining these findings with density functional theory (DFT) studies, we conclude that the strength of magnetoelastic coupling dictates the magnetic ground state. A strong <i>J</i><sub>1</sub> in Cs<sub>2</sub>AgFeCl<sub>6</sub> induces a large tetragonal lattice distortion, relieving magnetic frustration and stabilizing the AFM-I phase. In contrast, weaker magnetoelastic coupling in Cs<sub>2</sub>NaFeCl<sub>6</sub> causes minimal distortion, favoring the AFM-III phase via the <i>J</i><sub>1</sub>–<i>J</i><sub>2</sub> mechanism. Our findings show that magnetic interactions can be a primary driving force for structural phase transitions in these materials, while the strong structural distortion could determine the selection of magnetic ground-state ordering.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"37 18","pages":"6974–6982"},"PeriodicalIF":7.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.5c00610","citationCount":"0","resultStr":"{\"title\":\"Magnetostructural Transition in Spin Frustrated Halide Double Perovskites\",\"authors\":\"Kunpot Mopoung,&nbsp;, ,&nbsp;Quanzheng Tao,&nbsp;, ,&nbsp;Fabio Orlandi,&nbsp;, ,&nbsp;Kingshuk Mukhuti,&nbsp;, ,&nbsp;Kilian S. Ramsamoedj,&nbsp;, ,&nbsp;Utkarsh Singh,&nbsp;, ,&nbsp;Sakarn Khamkaeo,&nbsp;, ,&nbsp;Muyi Zhang,&nbsp;, ,&nbsp;Maarten W. de Dreu,&nbsp;, ,&nbsp;Elvina Dilmieva,&nbsp;, ,&nbsp;Emily L. Q. N. Ammerlaan,&nbsp;, ,&nbsp;Thom Ottenbros,&nbsp;, ,&nbsp;Steffen Wiedmann,&nbsp;, ,&nbsp;Andrew T. Boothroyd,&nbsp;, ,&nbsp;Peter C. M. Christianen,&nbsp;, ,&nbsp;Sergei I. Simak,&nbsp;, ,&nbsp;Johanna Rosen,&nbsp;, ,&nbsp;Feng Gao,&nbsp;, ,&nbsp;Irina A. Buyanova,&nbsp;, ,&nbsp;Weimin M. Chen*,&nbsp;, and ,&nbsp;Yuttapoom Puttisong*,&nbsp;\",\"doi\":\"10.1021/acs.chemmater.5c00610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Geometrical frustration in the face-centered-cubic (fcc) lattice presents a fundamental challenge in determining antiferromagnetic order, as the ground state is highly sensitive to subtle differences in competing magnetic interactions and structural symmetry. Here, we explore the magnetostructural interplay in two halide double perovskites, Cs<sub>2</sub>NaFeCl<sub>6</sub> and Cs<sub>2</sub>AgFeCl<sub>6</sub>. Although both materials have a cubic structure at room temperature, neutron diffraction shows that they adopt different antiferromagnetic structures upon cooling. Cs<sub>2</sub>NaFeCl<sub>6</sub> experiences a transition to an AFM-III order below 2.6 K, governed by <i>J</i><sub>1</sub> and <i>J</i><sub>2</sub> (first and second nearest-neighbor) magnetic exchange interactions. Cs<sub>2</sub>AgFeCl<sub>6</sub>, however, adopts an AFM-I order below 17 K, accompanied by a significant tetragonal distortion confirmed from both neutron diffraction and polarized Raman spectroscopy. Thermal expansion measurements reveal anomalous lattice expansion at the magnetic transitions in both compounds but are substantially stronger in Cs<sub>2</sub>AgFeCl<sub>6</sub>. Combining these findings with density functional theory (DFT) studies, we conclude that the strength of magnetoelastic coupling dictates the magnetic ground state. A strong <i>J</i><sub>1</sub> in Cs<sub>2</sub>AgFeCl<sub>6</sub> induces a large tetragonal lattice distortion, relieving magnetic frustration and stabilizing the AFM-I phase. In contrast, weaker magnetoelastic coupling in Cs<sub>2</sub>NaFeCl<sub>6</sub> causes minimal distortion, favoring the AFM-III phase via the <i>J</i><sub>1</sub>–<i>J</i><sub>2</sub> mechanism. Our findings show that magnetic interactions can be a primary driving force for structural phase transitions in these materials, while the strong structural distortion could determine the selection of magnetic ground-state ordering.</p>\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":\"37 18\",\"pages\":\"6974–6982\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.5c00610\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemmater.5c00610\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.5c00610","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于基态对相互竞争的磁相互作用和结构对称性的细微差异高度敏感,面心立方(fcc)晶格中的几何挫败对确定反铁磁有序提出了一个基本挑战。在这里,我们研究了两种卤化物双钙钛矿Cs2NaFeCl6和Cs2AgFeCl6的磁结构相互作用。虽然两种材料在室温下都具有立方结构,但中子衍射表明,冷却后它们具有不同的反铁磁结构。Cs2NaFeCl6在2.6 K以下由J1和J2(第一近邻和第二近邻)磁交换相互作用控制,向AFM-III阶过渡。然而,Cs2AgFeCl6在17 K以下采用AFM-I阶,并伴有明显的四方畸变,这是中子衍射和偏振拉曼光谱证实的。热膨胀测量结果显示,这两种化合物在磁跃迁处都存在异常晶格膨胀,但在Cs2AgFeCl6中晶格膨胀明显更强。将这些发现与密度泛函理论(DFT)的研究相结合,我们得出结论,磁弹性耦合的强度决定了磁基态。Cs2AgFeCl6中的强J1诱导了大的四方晶格畸变,减轻了磁挫折并稳定了AFM-I相。相比之下,cs2nafec16中较弱的磁弹性耦合导致最小的畸变,通过J1-J2机制有利于AFM-III相。我们的研究结果表明,磁性相互作用可能是这些材料结构相变的主要驱动力,而强烈的结构畸变可以决定磁性基态顺序的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetostructural Transition in Spin Frustrated Halide Double Perovskites

Geometrical frustration in the face-centered-cubic (fcc) lattice presents a fundamental challenge in determining antiferromagnetic order, as the ground state is highly sensitive to subtle differences in competing magnetic interactions and structural symmetry. Here, we explore the magnetostructural interplay in two halide double perovskites, Cs2NaFeCl6 and Cs2AgFeCl6. Although both materials have a cubic structure at room temperature, neutron diffraction shows that they adopt different antiferromagnetic structures upon cooling. Cs2NaFeCl6 experiences a transition to an AFM-III order below 2.6 K, governed by J1 and J2 (first and second nearest-neighbor) magnetic exchange interactions. Cs2AgFeCl6, however, adopts an AFM-I order below 17 K, accompanied by a significant tetragonal distortion confirmed from both neutron diffraction and polarized Raman spectroscopy. Thermal expansion measurements reveal anomalous lattice expansion at the magnetic transitions in both compounds but are substantially stronger in Cs2AgFeCl6. Combining these findings with density functional theory (DFT) studies, we conclude that the strength of magnetoelastic coupling dictates the magnetic ground state. A strong J1 in Cs2AgFeCl6 induces a large tetragonal lattice distortion, relieving magnetic frustration and stabilizing the AFM-I phase. In contrast, weaker magnetoelastic coupling in Cs2NaFeCl6 causes minimal distortion, favoring the AFM-III phase via the J1J2 mechanism. Our findings show that magnetic interactions can be a primary driving force for structural phase transitions in these materials, while the strong structural distortion could determine the selection of magnetic ground-state ordering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信