利用减少局域电荷阱效应增强聚酰亚胺衬底上单层MoS2晶体管的迁移率

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yakui Mu, , , Siyu Liu, , , Yanming Wang, , , Chen Shu, , , Yi Han, , , Kai Liu, , , Zengqin Song, , , Yang Wang, , , Xiaoyan Yan, , , Zhikun Liu*, , and , Mingzhen Zhao*, 
{"title":"利用减少局域电荷阱效应增强聚酰亚胺衬底上单层MoS2晶体管的迁移率","authors":"Yakui Mu,&nbsp;, ,&nbsp;Siyu Liu,&nbsp;, ,&nbsp;Yanming Wang,&nbsp;, ,&nbsp;Chen Shu,&nbsp;, ,&nbsp;Yi Han,&nbsp;, ,&nbsp;Kai Liu,&nbsp;, ,&nbsp;Zengqin Song,&nbsp;, ,&nbsp;Yang Wang,&nbsp;, ,&nbsp;Xiaoyan Yan,&nbsp;, ,&nbsp;Zhikun Liu*,&nbsp;, and ,&nbsp;Mingzhen Zhao*,&nbsp;","doi":"10.1021/acsaelm.5c01400","DOIUrl":null,"url":null,"abstract":"<p >Monolayer molybdenum disulfide (MoS<sub>2</sub>) is a promising candidate for flexible electronics, but its electron mobility on polymer substrates is typically constrained to below 10 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>. To investigate this limitation, we fabricate top-gated monolayer MoS<sub>2</sub> field-effect transistor (FET) on a polyimide substrate with a SiO<sub><i>x</i></sub> seed (SiO<sub><i>x</i></sub> FET). Our electron transport model reveals that the localized charge trapping (LCT) effect is the primary mobility-limiting mechanism. The sources of LCT, structural defects in the monolayer MoS<sub>2</sub> and interfacial defects from the SiO<sub><i>x</i></sub> seed layer, are systematically suppressed via a transfer optimization (TO) process and a vacuum annealing (VA) strategy, respectively. By combining TO with an optimized-VA strategy, the SiO<sub><i>x</i></sub> FET (TO+VA) achieves a high mobility of 24.8 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>, demonstrating a significant mobility enhancement at low and high electron densities, compared to the untreated SiO<sub><i>x</i></sub> FET. Crucially, the dominant mobility-limiting mechanism shifts from the LCT effect in the untreated SiO<sub><i>x</i></sub> FET to Coulomb impurity scattering in the SiO<sub><i>x</i></sub> FET (TO+VA). The fundamental study underscores a model-guided approach to systematically mitigate the LCT effect, enabling high-mobility monolayer MoS<sub>2</sub> devices on polymer substrates.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 18","pages":"8571–8582"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mobility Enhancement in Monolayer MoS2 Transistors on a Polyimide Substrate by Reducing Localized Charge Trap Effect\",\"authors\":\"Yakui Mu,&nbsp;, ,&nbsp;Siyu Liu,&nbsp;, ,&nbsp;Yanming Wang,&nbsp;, ,&nbsp;Chen Shu,&nbsp;, ,&nbsp;Yi Han,&nbsp;, ,&nbsp;Kai Liu,&nbsp;, ,&nbsp;Zengqin Song,&nbsp;, ,&nbsp;Yang Wang,&nbsp;, ,&nbsp;Xiaoyan Yan,&nbsp;, ,&nbsp;Zhikun Liu*,&nbsp;, and ,&nbsp;Mingzhen Zhao*,&nbsp;\",\"doi\":\"10.1021/acsaelm.5c01400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Monolayer molybdenum disulfide (MoS<sub>2</sub>) is a promising candidate for flexible electronics, but its electron mobility on polymer substrates is typically constrained to below 10 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>. To investigate this limitation, we fabricate top-gated monolayer MoS<sub>2</sub> field-effect transistor (FET) on a polyimide substrate with a SiO<sub><i>x</i></sub> seed (SiO<sub><i>x</i></sub> FET). Our electron transport model reveals that the localized charge trapping (LCT) effect is the primary mobility-limiting mechanism. The sources of LCT, structural defects in the monolayer MoS<sub>2</sub> and interfacial defects from the SiO<sub><i>x</i></sub> seed layer, are systematically suppressed via a transfer optimization (TO) process and a vacuum annealing (VA) strategy, respectively. By combining TO with an optimized-VA strategy, the SiO<sub><i>x</i></sub> FET (TO+VA) achieves a high mobility of 24.8 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup>, demonstrating a significant mobility enhancement at low and high electron densities, compared to the untreated SiO<sub><i>x</i></sub> FET. Crucially, the dominant mobility-limiting mechanism shifts from the LCT effect in the untreated SiO<sub><i>x</i></sub> FET to Coulomb impurity scattering in the SiO<sub><i>x</i></sub> FET (TO+VA). The fundamental study underscores a model-guided approach to systematically mitigate the LCT effect, enabling high-mobility monolayer MoS<sub>2</sub> devices on polymer substrates.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 18\",\"pages\":\"8571–8582\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c01400\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c01400","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

单层二硫化钼(MoS2)是一种很有前途的柔性电子材料,但其在聚合物衬底上的电子迁移率通常限制在10 cm2 V-1 s-1以下。为了研究这一限制,我们在带有SiOx种子(SiOx FET)的聚酰亚胺衬底上制造了顶门控单层MoS2场效应晶体管(FET)。我们的电子传递模型表明局域电荷捕获效应是主要的迁移率限制机制。通过传递优化(TO)工艺和真空退火(VA)策略,系统地抑制了LCT的来源,即单层MoS2的结构缺陷和SiOx种子层的界面缺陷。通过将TO与优化的VA策略相结合,SiOx FET (TO+VA)实现了24.8 cm2 V-1 s-1的高迁移率,与未处理的SiOx FET相比,在低和高电子密度下都表现出显著的迁移率增强。关键是,主要的迁移率限制机制从未经处理的SiOx FET中的LCT效应转变为SiOx FET中的库仑杂质散射(to +VA)。这项基础研究强调了一种模型导向的方法,可以系统地减轻LCT效应,从而在聚合物衬底上实现高迁移率的单层MoS2器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mobility Enhancement in Monolayer MoS2 Transistors on a Polyimide Substrate by Reducing Localized Charge Trap Effect

Mobility Enhancement in Monolayer MoS2 Transistors on a Polyimide Substrate by Reducing Localized Charge Trap Effect

Monolayer molybdenum disulfide (MoS2) is a promising candidate for flexible electronics, but its electron mobility on polymer substrates is typically constrained to below 10 cm2 V–1 s–1. To investigate this limitation, we fabricate top-gated monolayer MoS2 field-effect transistor (FET) on a polyimide substrate with a SiOx seed (SiOx FET). Our electron transport model reveals that the localized charge trapping (LCT) effect is the primary mobility-limiting mechanism. The sources of LCT, structural defects in the monolayer MoS2 and interfacial defects from the SiOx seed layer, are systematically suppressed via a transfer optimization (TO) process and a vacuum annealing (VA) strategy, respectively. By combining TO with an optimized-VA strategy, the SiOx FET (TO+VA) achieves a high mobility of 24.8 cm2 V–1 s–1, demonstrating a significant mobility enhancement at low and high electron densities, compared to the untreated SiOx FET. Crucially, the dominant mobility-limiting mechanism shifts from the LCT effect in the untreated SiOx FET to Coulomb impurity scattering in the SiOx FET (TO+VA). The fundamental study underscores a model-guided approach to systematically mitigate the LCT effect, enabling high-mobility monolayer MoS2 devices on polymer substrates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信