大规模生产适用于快速封闭空间蒸发的高效Cs3Cu2I5 x射线闪烁体

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Hao-Cheng Lin, , , Yung-Tang Chuang, , , Pei-En Jan, , , Hung-Ming Chen, , , Po-Yu Chen, , , Kuo-Wei Huang, , , Ming-Tsun Kuo, , , Sinn-Wen Chen, , and , Hao-Wu Lin*, 
{"title":"大规模生产适用于快速封闭空间蒸发的高效Cs3Cu2I5 x射线闪烁体","authors":"Hao-Cheng Lin,&nbsp;, ,&nbsp;Yung-Tang Chuang,&nbsp;, ,&nbsp;Pei-En Jan,&nbsp;, ,&nbsp;Hung-Ming Chen,&nbsp;, ,&nbsp;Po-Yu Chen,&nbsp;, ,&nbsp;Kuo-Wei Huang,&nbsp;, ,&nbsp;Ming-Tsun Kuo,&nbsp;, ,&nbsp;Sinn-Wen Chen,&nbsp;, and ,&nbsp;Hao-Wu Lin*,&nbsp;","doi":"10.1021/acsaelm.5c01257","DOIUrl":null,"url":null,"abstract":"<p >Advancing X-ray imaging systems necessitate scintillators that deliver both high sensitivity and high spatial resolution, a long-standing challenge due to material and fabrication limitations. Low-dimensional metal halides such as Cs<sub>3</sub>Cu<sub>2</sub>I<sub>5</sub> are intrinsically promising for this application, yet scalable synthesis of thick, high-quality films remains a significant bottleneck. We introduce a rapid (∼minutes) and highly efficient closed-space evaporation (CSE) method for growing phase-pure Cs<sub>3</sub>Cu<sub>2</sub>I<sub>5</sub> films up to and exceeding 100 μm in thickness. These films function as high-performance scintillators, exhibiting a remarkable light yield of 55,000 photons/MeV, enabling X-ray detection at an exceptionally low dose rate of 0.21 nGy<sub>air</sub>/s, and achieving a spatial resolution of up to 23 lp/mm. Furthermore, they demonstrate outstanding radiation hardness, maintaining stable characteristics after an exposure equivalent to more than 3,000 clinical chest image X-ray exposures. This CSE technique represents a transformative approach to fabricating high-quality metal halide scintillators, opening avenues for the development of cost-effective, ultrasensitive, and high-resolution X-ray imaging modalities.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 18","pages":"8492–8500"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsaelm.5c01257","citationCount":"0","resultStr":"{\"title\":\"Efficient Cs3Cu2I5 X-ray Scintillators by Mass-Production-Applicable Fast-Closed-Space-Evaporation\",\"authors\":\"Hao-Cheng Lin,&nbsp;, ,&nbsp;Yung-Tang Chuang,&nbsp;, ,&nbsp;Pei-En Jan,&nbsp;, ,&nbsp;Hung-Ming Chen,&nbsp;, ,&nbsp;Po-Yu Chen,&nbsp;, ,&nbsp;Kuo-Wei Huang,&nbsp;, ,&nbsp;Ming-Tsun Kuo,&nbsp;, ,&nbsp;Sinn-Wen Chen,&nbsp;, and ,&nbsp;Hao-Wu Lin*,&nbsp;\",\"doi\":\"10.1021/acsaelm.5c01257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Advancing X-ray imaging systems necessitate scintillators that deliver both high sensitivity and high spatial resolution, a long-standing challenge due to material and fabrication limitations. Low-dimensional metal halides such as Cs<sub>3</sub>Cu<sub>2</sub>I<sub>5</sub> are intrinsically promising for this application, yet scalable synthesis of thick, high-quality films remains a significant bottleneck. We introduce a rapid (∼minutes) and highly efficient closed-space evaporation (CSE) method for growing phase-pure Cs<sub>3</sub>Cu<sub>2</sub>I<sub>5</sub> films up to and exceeding 100 μm in thickness. These films function as high-performance scintillators, exhibiting a remarkable light yield of 55,000 photons/MeV, enabling X-ray detection at an exceptionally low dose rate of 0.21 nGy<sub>air</sub>/s, and achieving a spatial resolution of up to 23 lp/mm. Furthermore, they demonstrate outstanding radiation hardness, maintaining stable characteristics after an exposure equivalent to more than 3,000 clinical chest image X-ray exposures. This CSE technique represents a transformative approach to fabricating high-quality metal halide scintillators, opening avenues for the development of cost-effective, ultrasensitive, and high-resolution X-ray imaging modalities.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"7 18\",\"pages\":\"8492–8500\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acsaelm.5c01257\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaelm.5c01257\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c01257","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

先进的x射线成像系统需要提供高灵敏度和高空间分辨率的闪烁体,这是由于材料和制造限制而长期存在的挑战。低维金属卤化物(如Cs3Cu2I5)在这一应用中具有内在的前景,但可扩展的高质量厚膜合成仍然是一个重大瓶颈。我们介绍了一种快速(~分钟)和高效的封闭空间蒸发(CSE)方法,用于生长厚度达到或超过100 μm的相纯Cs3Cu2I5薄膜。这些薄膜作为高性能的闪烁体,表现出55,000光子/MeV的显着产光量,能够以0.21 nGyair/s的极低剂量率进行x射线检测,并实现高达23 lp/mm的空间分辨率。此外,它们表现出出色的辐射硬度,在相当于3000多次临床胸部x射线图像暴露后保持稳定的特性。这种CSE技术代表了一种制造高质量金属卤化物闪烁体的变革性方法,为开发具有成本效益、超灵敏和高分辨率的x射线成像模式开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Cs3Cu2I5 X-ray Scintillators by Mass-Production-Applicable Fast-Closed-Space-Evaporation

Advancing X-ray imaging systems necessitate scintillators that deliver both high sensitivity and high spatial resolution, a long-standing challenge due to material and fabrication limitations. Low-dimensional metal halides such as Cs3Cu2I5 are intrinsically promising for this application, yet scalable synthesis of thick, high-quality films remains a significant bottleneck. We introduce a rapid (∼minutes) and highly efficient closed-space evaporation (CSE) method for growing phase-pure Cs3Cu2I5 films up to and exceeding 100 μm in thickness. These films function as high-performance scintillators, exhibiting a remarkable light yield of 55,000 photons/MeV, enabling X-ray detection at an exceptionally low dose rate of 0.21 nGyair/s, and achieving a spatial resolution of up to 23 lp/mm. Furthermore, they demonstrate outstanding radiation hardness, maintaining stable characteristics after an exposure equivalent to more than 3,000 clinical chest image X-ray exposures. This CSE technique represents a transformative approach to fabricating high-quality metal halide scintillators, opening avenues for the development of cost-effective, ultrasensitive, and high-resolution X-ray imaging modalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信