具有强电子相关性的稀土基Cu3RETe3热电材料的能量转换性能评价

IF 7 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Oleksandr Cherniushok, , , Oleksandr V. Smitiukh, , , Dariusz Wieczorek, , , Oleg V. Marchuk, , , Bartlomiej Wiendlocha, , , Taras Parashchuk*, , and , Krzysztof T. Wojciechowski, 
{"title":"具有强电子相关性的稀土基Cu3RETe3热电材料的能量转换性能评价","authors":"Oleksandr Cherniushok,&nbsp;, ,&nbsp;Oleksandr V. Smitiukh,&nbsp;, ,&nbsp;Dariusz Wieczorek,&nbsp;, ,&nbsp;Oleg V. Marchuk,&nbsp;, ,&nbsp;Bartlomiej Wiendlocha,&nbsp;, ,&nbsp;Taras Parashchuk*,&nbsp;, and ,&nbsp;Krzysztof T. Wojciechowski,&nbsp;","doi":"10.1021/acs.chemmater.5c01744","DOIUrl":null,"url":null,"abstract":"<p >A key challenge in thermoelectric materials development is achieving low thermal conductivity without compromising the electrical performance. Rare-earth tellurides, due to their complex crystal chemistry and intrinsic defects, offer a pathway to optimize these conflicting parameters. In this work, we investigated the structural and thermoelectric properties of a series of ternary rare-earth copper tellurides, Cu<sub>3</sub><i>RE</i>Te<sub>3</sub> (<i>RE</i> = Er, Ho, Tb). Our findings reveal that the specific rare-earth element plays a critical role in determining the crystal structure of these compounds. Notably, the Er- and Ho-containing phases predominantly crystallize in the orthorhombic <i>Pmn</i>2<sub>1</sub> structure, whereas the Tb analogue adopts a trigonal <i>R</i>-3 structure. Owing to this structural difference, the Tb-based compound exhibits approximately twice the effective mass─and, correspondingly, a 2-fold increase in the Seebeck coefficient─attributed to band convergence, as confirmed by theoretical calculations. All materials exhibit intrinsically low lattice thermal conductivity, attributed to strong lattice anharmonicity and point defect scattering, particularly pronounced in Cu<sub>3</sub>TbTe<sub>3</sub>. Hall effect and Seebeck measurements indicate <i>p</i>-type semiconducting behavior with carrier concentrations on the order of 10<sup>20</sup> cm<sup>–3</sup>. First-principles calculations show the presence of strong electronic correlations, and GGA+U method is necessary to confirm semiconducting electronic structures and support experimental trends in carrier mobility and Seebeck coefficient. Among the compounds, Cu<sub>3</sub>HoTe<sub>3</sub> achieves the highest peak thermoelectric figure of merit (<i>ZT</i> ≈ 0.9 at 873 K), while Cu<sub>3</sub>TbTe<sub>3</sub> delivers the highest average performance (<i>ZT</i><sub>ave</sub> = 0.4 over the temperature range of 298–873 K). These findings highlight the potential of Cu<sub>3</sub><i>RE</i>Te<sub>3</sub> compounds as efficient rare-earth-based thermoelectric materials for energy conversion applications.</p>","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"37 18","pages":"7377–7389"},"PeriodicalIF":7.0000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.5c01744","citationCount":"0","resultStr":"{\"title\":\"Evaluating the Energy Conversion Performance of Rare-Earth-Based Cu3RETe3 Thermoelectric Materials with Strong Electronic Correlations\",\"authors\":\"Oleksandr Cherniushok,&nbsp;, ,&nbsp;Oleksandr V. Smitiukh,&nbsp;, ,&nbsp;Dariusz Wieczorek,&nbsp;, ,&nbsp;Oleg V. Marchuk,&nbsp;, ,&nbsp;Bartlomiej Wiendlocha,&nbsp;, ,&nbsp;Taras Parashchuk*,&nbsp;, and ,&nbsp;Krzysztof T. Wojciechowski,&nbsp;\",\"doi\":\"10.1021/acs.chemmater.5c01744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A key challenge in thermoelectric materials development is achieving low thermal conductivity without compromising the electrical performance. Rare-earth tellurides, due to their complex crystal chemistry and intrinsic defects, offer a pathway to optimize these conflicting parameters. In this work, we investigated the structural and thermoelectric properties of a series of ternary rare-earth copper tellurides, Cu<sub>3</sub><i>RE</i>Te<sub>3</sub> (<i>RE</i> = Er, Ho, Tb). Our findings reveal that the specific rare-earth element plays a critical role in determining the crystal structure of these compounds. Notably, the Er- and Ho-containing phases predominantly crystallize in the orthorhombic <i>Pmn</i>2<sub>1</sub> structure, whereas the Tb analogue adopts a trigonal <i>R</i>-3 structure. Owing to this structural difference, the Tb-based compound exhibits approximately twice the effective mass─and, correspondingly, a 2-fold increase in the Seebeck coefficient─attributed to band convergence, as confirmed by theoretical calculations. All materials exhibit intrinsically low lattice thermal conductivity, attributed to strong lattice anharmonicity and point defect scattering, particularly pronounced in Cu<sub>3</sub>TbTe<sub>3</sub>. Hall effect and Seebeck measurements indicate <i>p</i>-type semiconducting behavior with carrier concentrations on the order of 10<sup>20</sup> cm<sup>–3</sup>. First-principles calculations show the presence of strong electronic correlations, and GGA+U method is necessary to confirm semiconducting electronic structures and support experimental trends in carrier mobility and Seebeck coefficient. Among the compounds, Cu<sub>3</sub>HoTe<sub>3</sub> achieves the highest peak thermoelectric figure of merit (<i>ZT</i> ≈ 0.9 at 873 K), while Cu<sub>3</sub>TbTe<sub>3</sub> delivers the highest average performance (<i>ZT</i><sub>ave</sub> = 0.4 over the temperature range of 298–873 K). These findings highlight the potential of Cu<sub>3</sub><i>RE</i>Te<sub>3</sub> compounds as efficient rare-earth-based thermoelectric materials for energy conversion applications.</p>\",\"PeriodicalId\":33,\"journal\":{\"name\":\"Chemistry of Materials\",\"volume\":\"37 18\",\"pages\":\"7377–7389\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.5c01744\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.chemmater.5c01744\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemmater.5c01744","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

热电材料开发的一个关键挑战是在不影响电性能的情况下实现低导热性。稀土碲化物由于其复杂的晶体化学和内在缺陷,为优化这些冲突参数提供了一条途径。在这项工作中,我们研究了一系列三元稀土碲化铜Cu3RETe3 (RE = Er, Ho, Tb)的结构和热电性能。我们的研究结果表明,特定的稀土元素在决定这些化合物的晶体结构中起着关键作用。值得注意的是,含有Er和ho的相主要以正交晶型Pmn21结构结晶,而Tb类似物则采用三角形R-3结构。由于这种结构差异,理论计算证实,基于tb基的化合物表现出大约两倍的有效质量──相应地,由于能带收敛,塞贝克系数增加了2倍。所有材料都表现出本质上低的晶格热导率,这归因于强晶格非调和性和点缺陷散射,特别是在Cu3TbTe3中。霍尔效应和塞贝克测量表明,载流子浓度在1020 cm-3量级时,p型半导体行为。第一性原理计算表明存在强的电子相关性,GGA+U方法对于确认半导体电子结构和支持载流子迁移率和塞贝克系数的实验趋势是必要的。其中,Cu3HoTe3在873 K时具有最高的峰值热电性能(ZT≈0.9),而Cu3TbTe3在298 ~ 873 K温度范围内具有最高的平均性能(ZTave = 0.4)。这些发现突出了Cu3RETe3化合物作为能量转换应用的高效稀土基热电材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating the Energy Conversion Performance of Rare-Earth-Based Cu3RETe3 Thermoelectric Materials with Strong Electronic Correlations

A key challenge in thermoelectric materials development is achieving low thermal conductivity without compromising the electrical performance. Rare-earth tellurides, due to their complex crystal chemistry and intrinsic defects, offer a pathway to optimize these conflicting parameters. In this work, we investigated the structural and thermoelectric properties of a series of ternary rare-earth copper tellurides, Cu3RETe3 (RE = Er, Ho, Tb). Our findings reveal that the specific rare-earth element plays a critical role in determining the crystal structure of these compounds. Notably, the Er- and Ho-containing phases predominantly crystallize in the orthorhombic Pmn21 structure, whereas the Tb analogue adopts a trigonal R-3 structure. Owing to this structural difference, the Tb-based compound exhibits approximately twice the effective mass─and, correspondingly, a 2-fold increase in the Seebeck coefficient─attributed to band convergence, as confirmed by theoretical calculations. All materials exhibit intrinsically low lattice thermal conductivity, attributed to strong lattice anharmonicity and point defect scattering, particularly pronounced in Cu3TbTe3. Hall effect and Seebeck measurements indicate p-type semiconducting behavior with carrier concentrations on the order of 1020 cm–3. First-principles calculations show the presence of strong electronic correlations, and GGA+U method is necessary to confirm semiconducting electronic structures and support experimental trends in carrier mobility and Seebeck coefficient. Among the compounds, Cu3HoTe3 achieves the highest peak thermoelectric figure of merit (ZT ≈ 0.9 at 873 K), while Cu3TbTe3 delivers the highest average performance (ZTave = 0.4 over the temperature range of 298–873 K). These findings highlight the potential of Cu3RETe3 compounds as efficient rare-earth-based thermoelectric materials for energy conversion applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信