Yulia Sergeeva*, , , Sing Yee Yeung, , , Thomas Hix-Janssens, , and , Börje Sellergren*,
{"title":"具有适应性自组装单层壳的金纳米颗粒允许在超低浓度下对流感病毒进行多价抑制和感应","authors":"Yulia Sergeeva*, , , Sing Yee Yeung, , , Thomas Hix-Janssens, , and , Börje Sellergren*, ","doi":"10.1021/acscentsci.5c00602","DOIUrl":null,"url":null,"abstract":"<p >Multivalent inhibitors that mimic the polysaccharide array on cells represent a new paradigm in the development of antiviral agents and antibiotics. Covalent ligand anchoring limits the affinity and, in turn, potency of these inhibitors with dissociation constants (<i>K</i><sub>d</sub>) commonly found in the micromolar or upper nanomolar range. Addressing this deficiency we here report on easily accessible gold core–shell nanoparticles (rSAM-NPs) featuring adaptable reversible self-assembled monolayer (rSAM)-based shells. The rSAMs are anchored by noncovalent amidinium-carboxylate interactions on gold nanoparticles at slightly alkaline pH resulting in laterally mobile pH-responsive assemblies that are functional at physiological pH. Introducing sialic acid ligands in the shell, we show that the rSAM-NPs strongly interact with the influenza virus surface protein hemagglutinin (limit of detection LoD < 2 nM) and deactivated bird flu virus H5N1 (LoD < 1 HAU) in allantoic liquid. Finally, we show that the rSAM-NPs effectively inhibit the interaction of the virus with red blood cells at concentrations in the low picomolar range. This represents a significant increase in potency with respect to multivalent inhibitors of similar size based on covalently anchored monosaccharides.</p><p >Gold core nanoparticles with adaptable, sialic acid presenting, self-assembled monolayer shells effectively inhibit the interaction between deactivated bird flu virus (H5N1) and red blood cells at low picomolar concentrations.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 9","pages":"1659–1669"},"PeriodicalIF":10.4000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c00602","citationCount":"0","resultStr":"{\"title\":\"Gold Nanoparticles with Adaptable Self-Assembled Monolayer Shells Allow Multivalent Inhibition and Sensing of Influenza Virus at Ultralow Concentrations\",\"authors\":\"Yulia Sergeeva*, , , Sing Yee Yeung, , , Thomas Hix-Janssens, , and , Börje Sellergren*, \",\"doi\":\"10.1021/acscentsci.5c00602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Multivalent inhibitors that mimic the polysaccharide array on cells represent a new paradigm in the development of antiviral agents and antibiotics. Covalent ligand anchoring limits the affinity and, in turn, potency of these inhibitors with dissociation constants (<i>K</i><sub>d</sub>) commonly found in the micromolar or upper nanomolar range. Addressing this deficiency we here report on easily accessible gold core–shell nanoparticles (rSAM-NPs) featuring adaptable reversible self-assembled monolayer (rSAM)-based shells. The rSAMs are anchored by noncovalent amidinium-carboxylate interactions on gold nanoparticles at slightly alkaline pH resulting in laterally mobile pH-responsive assemblies that are functional at physiological pH. Introducing sialic acid ligands in the shell, we show that the rSAM-NPs strongly interact with the influenza virus surface protein hemagglutinin (limit of detection LoD < 2 nM) and deactivated bird flu virus H5N1 (LoD < 1 HAU) in allantoic liquid. Finally, we show that the rSAM-NPs effectively inhibit the interaction of the virus with red blood cells at concentrations in the low picomolar range. This represents a significant increase in potency with respect to multivalent inhibitors of similar size based on covalently anchored monosaccharides.</p><p >Gold core nanoparticles with adaptable, sialic acid presenting, self-assembled monolayer shells effectively inhibit the interaction between deactivated bird flu virus (H5N1) and red blood cells at low picomolar concentrations.</p>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":\"11 9\",\"pages\":\"1659–1669\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c00602\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscentsci.5c00602\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.5c00602","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Gold Nanoparticles with Adaptable Self-Assembled Monolayer Shells Allow Multivalent Inhibition and Sensing of Influenza Virus at Ultralow Concentrations
Multivalent inhibitors that mimic the polysaccharide array on cells represent a new paradigm in the development of antiviral agents and antibiotics. Covalent ligand anchoring limits the affinity and, in turn, potency of these inhibitors with dissociation constants (Kd) commonly found in the micromolar or upper nanomolar range. Addressing this deficiency we here report on easily accessible gold core–shell nanoparticles (rSAM-NPs) featuring adaptable reversible self-assembled monolayer (rSAM)-based shells. The rSAMs are anchored by noncovalent amidinium-carboxylate interactions on gold nanoparticles at slightly alkaline pH resulting in laterally mobile pH-responsive assemblies that are functional at physiological pH. Introducing sialic acid ligands in the shell, we show that the rSAM-NPs strongly interact with the influenza virus surface protein hemagglutinin (limit of detection LoD < 2 nM) and deactivated bird flu virus H5N1 (LoD < 1 HAU) in allantoic liquid. Finally, we show that the rSAM-NPs effectively inhibit the interaction of the virus with red blood cells at concentrations in the low picomolar range. This represents a significant increase in potency with respect to multivalent inhibitors of similar size based on covalently anchored monosaccharides.
Gold core nanoparticles with adaptable, sialic acid presenting, self-assembled monolayer shells effectively inhibit the interaction between deactivated bird flu virus (H5N1) and red blood cells at low picomolar concentrations.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.