加速和加强电化学界面的热力学模拟

IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaochen Du, , , Mengren Liu, , , Jiayu Peng, , , Hoje Chun, , , Alexander Hoffman, , , Bilge Yildiz, , , Lin Li, , , Martin Z. Bazant, , and , Rafael Gómez-Bombarelli*, 
{"title":"加速和加强电化学界面的热力学模拟","authors":"Xiaochen Du,&nbsp;, ,&nbsp;Mengren Liu,&nbsp;, ,&nbsp;Jiayu Peng,&nbsp;, ,&nbsp;Hoje Chun,&nbsp;, ,&nbsp;Alexander Hoffman,&nbsp;, ,&nbsp;Bilge Yildiz,&nbsp;, ,&nbsp;Lin Li,&nbsp;, ,&nbsp;Martin Z. Bazant,&nbsp;, and ,&nbsp;Rafael Gómez-Bombarelli*,&nbsp;","doi":"10.1021/acscentsci.5c00547","DOIUrl":null,"url":null,"abstract":"<p >Electrochemical interfaces are crucial in catalysis, energy storage, and corrosion, where their stability and reactivity depend on complex interactions between the electrode, adsorbates, and electrolyte. Predicting stable surface structures remains challenging, as traditional surface Pourbaix diagrams tend to either rely on expert knowledge or costly <i>ab initio</i> sampling and neglect thermodynamic equilibration with the environment. Machine learning (ML) potentials can accelerate static modeling but often overlook dynamic surface transformations. Here, we extend the Virtual Surface Site Relaxation-Monte Carlo (VSSR-MC) method to autonomously sample surface reconstructions modeled under aqueous electrochemical conditions. Through fine-tuning foundational ML force fields, we accurately and efficiently predict surface energetics, recovering known Pt(111) phases and revealing new LaMnO<sub>3</sub>(001) surface reconstructions. By explicitly accounting for bulk-electrolyte equilibria, our framework enhances electrochemical stability predictions, offering a scalable approach to understanding and designing materials for electrochemical applications.</p><p >By combining automated sampling, fine-tuned machine learning force fields, and a new thermodynamic framework, we accelerate the prediction of realistic surface Pourbaix diagrams.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"11 9","pages":"1558–1572"},"PeriodicalIF":10.4000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c00547","citationCount":"0","resultStr":"{\"title\":\"Accelerating and Enhancing Thermodynamic Simulations of Electrochemical Interfaces\",\"authors\":\"Xiaochen Du,&nbsp;, ,&nbsp;Mengren Liu,&nbsp;, ,&nbsp;Jiayu Peng,&nbsp;, ,&nbsp;Hoje Chun,&nbsp;, ,&nbsp;Alexander Hoffman,&nbsp;, ,&nbsp;Bilge Yildiz,&nbsp;, ,&nbsp;Lin Li,&nbsp;, ,&nbsp;Martin Z. Bazant,&nbsp;, and ,&nbsp;Rafael Gómez-Bombarelli*,&nbsp;\",\"doi\":\"10.1021/acscentsci.5c00547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electrochemical interfaces are crucial in catalysis, energy storage, and corrosion, where their stability and reactivity depend on complex interactions between the electrode, adsorbates, and electrolyte. Predicting stable surface structures remains challenging, as traditional surface Pourbaix diagrams tend to either rely on expert knowledge or costly <i>ab initio</i> sampling and neglect thermodynamic equilibration with the environment. Machine learning (ML) potentials can accelerate static modeling but often overlook dynamic surface transformations. Here, we extend the Virtual Surface Site Relaxation-Monte Carlo (VSSR-MC) method to autonomously sample surface reconstructions modeled under aqueous electrochemical conditions. Through fine-tuning foundational ML force fields, we accurately and efficiently predict surface energetics, recovering known Pt(111) phases and revealing new LaMnO<sub>3</sub>(001) surface reconstructions. By explicitly accounting for bulk-electrolyte equilibria, our framework enhances electrochemical stability predictions, offering a scalable approach to understanding and designing materials for electrochemical applications.</p><p >By combining automated sampling, fine-tuned machine learning force fields, and a new thermodynamic framework, we accelerate the prediction of realistic surface Pourbaix diagrams.</p>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":\"11 9\",\"pages\":\"1558–1572\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acscentsci.5c00547\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscentsci.5c00547\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscentsci.5c00547","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电化学界面在催化、能量储存和腐蚀中是至关重要的,它们的稳定性和反应性取决于电极、吸附剂和电解质之间复杂的相互作用。预测稳定的表面结构仍然具有挑战性,因为传统的表面Pourbaix图倾向于依赖于专家知识或昂贵的从头开始采样,并且忽略了与环境的热力学平衡。机器学习(ML)的潜力可以加速静态建模,但往往忽略动态表面转换。在这里,我们将虚拟表面弛豫-蒙特卡罗(VSSR-MC)方法扩展到水电化学条件下的自主样品表面重建。通过微调基础ML力场,我们准确有效地预测了表面能量学,恢复了已知的Pt(111)相,并揭示了新的LaMnO3(001)表面重建。通过明确地考虑体电解质平衡,我们的框架增强了电化学稳定性预测,为理解和设计电化学应用材料提供了一种可扩展的方法。通过结合自动采样,微调机器学习力场和新的热力学框架,我们加速了现实表面Pourbaix图的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating and Enhancing Thermodynamic Simulations of Electrochemical Interfaces

Electrochemical interfaces are crucial in catalysis, energy storage, and corrosion, where their stability and reactivity depend on complex interactions between the electrode, adsorbates, and electrolyte. Predicting stable surface structures remains challenging, as traditional surface Pourbaix diagrams tend to either rely on expert knowledge or costly ab initio sampling and neglect thermodynamic equilibration with the environment. Machine learning (ML) potentials can accelerate static modeling but often overlook dynamic surface transformations. Here, we extend the Virtual Surface Site Relaxation-Monte Carlo (VSSR-MC) method to autonomously sample surface reconstructions modeled under aqueous electrochemical conditions. Through fine-tuning foundational ML force fields, we accurately and efficiently predict surface energetics, recovering known Pt(111) phases and revealing new LaMnO3(001) surface reconstructions. By explicitly accounting for bulk-electrolyte equilibria, our framework enhances electrochemical stability predictions, offering a scalable approach to understanding and designing materials for electrochemical applications.

By combining automated sampling, fine-tuned machine learning force fields, and a new thermodynamic framework, we accelerate the prediction of realistic surface Pourbaix diagrams.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信