嗜麦芽窄养单胞菌通过降解其脂肽类抗生素阻碍芽孢杆菌对番茄枯萎病的生物防治。

Junwei Peng,Dmitri V Mavrodi,Jiasui Li,Suhelen Egan,Huanhuan Zhang,Xiuli Fan,Yang Liu,Keke Dang,Olga V Mavrodi,Qin Liu,Yuanhua Dong,Jiangang Li
{"title":"嗜麦芽窄养单胞菌通过降解其脂肽类抗生素阻碍芽孢杆菌对番茄枯萎病的生物防治。","authors":"Junwei Peng,Dmitri V Mavrodi,Jiasui Li,Suhelen Egan,Huanhuan Zhang,Xiuli Fan,Yang Liu,Keke Dang,Olga V Mavrodi,Qin Liu,Yuanhua Dong,Jiangang Li","doi":"10.1093/ismejo/wraf210","DOIUrl":null,"url":null,"abstract":"Harnessing antibiotic-producing microorganisms that antagonize pathogens represents a sustainable approach for plant disease management. However, biocontrol agents that are effective in the laboratory often have diminished or variable performance in the field. It is often assumed that microbial interactions within the plant rhizosphere can influence the performance of biocontrol agents. To validate this hypothesis, we established a tripartite bacterial model system based on field investigations, involving antibiotic producers (Bacillus amyloliquefaciens P224, Bacillus subtilis P165, and Bacillus velezensis P63), an antibiotic degrader (Stenotrophomonas maltophilia P373), and a bacterial plant pathogen (Ralstonia solanacearum PA1). The selected Bacillus species antagonize R. solanacearum and act as biocontrol agents of the bacterial wilt of tomatoes caused by this pathogen. We demonstrated that S. maltophilia diminished this biocontrol effect by degrading the lipopeptide antibiotics iturin, fengycin, and surfactin secreted by Bacillus spp., thereby serving as a \"pathogen helper\" that indirectly facilitated pathogen invasion. Further transcriptomic and proteomic analyses revealed that the lipopeptide inactivation mechanism in S. maltophilia involved multi-drug efflux systems, ribosomal adaptation, and enzymatic hydrolysis. Additionally, the interspecies interactions in our model system are modulated by nutrient availability, with elevated carbon sources enhancing the interference competitive ability of Bacillus spp. against S. maltophilia, thereby mitigating its negative impact on the biocontrol of R. solanacearum. Our study sheds light on the complex interactions among plant pathogens, biocontrol agents, and the indigenous microbial community, underscoring the necessity to account for native antibiotic-degrading organisms when applying biocontrol strategies for effective disease management.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stenotrophomonas maltophilia impedes Bacillus biocontrol of tomato wilt disease by degrading its lipopeptide antibiotics.\",\"authors\":\"Junwei Peng,Dmitri V Mavrodi,Jiasui Li,Suhelen Egan,Huanhuan Zhang,Xiuli Fan,Yang Liu,Keke Dang,Olga V Mavrodi,Qin Liu,Yuanhua Dong,Jiangang Li\",\"doi\":\"10.1093/ismejo/wraf210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Harnessing antibiotic-producing microorganisms that antagonize pathogens represents a sustainable approach for plant disease management. However, biocontrol agents that are effective in the laboratory often have diminished or variable performance in the field. It is often assumed that microbial interactions within the plant rhizosphere can influence the performance of biocontrol agents. To validate this hypothesis, we established a tripartite bacterial model system based on field investigations, involving antibiotic producers (Bacillus amyloliquefaciens P224, Bacillus subtilis P165, and Bacillus velezensis P63), an antibiotic degrader (Stenotrophomonas maltophilia P373), and a bacterial plant pathogen (Ralstonia solanacearum PA1). The selected Bacillus species antagonize R. solanacearum and act as biocontrol agents of the bacterial wilt of tomatoes caused by this pathogen. We demonstrated that S. maltophilia diminished this biocontrol effect by degrading the lipopeptide antibiotics iturin, fengycin, and surfactin secreted by Bacillus spp., thereby serving as a \\\"pathogen helper\\\" that indirectly facilitated pathogen invasion. Further transcriptomic and proteomic analyses revealed that the lipopeptide inactivation mechanism in S. maltophilia involved multi-drug efflux systems, ribosomal adaptation, and enzymatic hydrolysis. Additionally, the interspecies interactions in our model system are modulated by nutrient availability, with elevated carbon sources enhancing the interference competitive ability of Bacillus spp. against S. maltophilia, thereby mitigating its negative impact on the biocontrol of R. solanacearum. Our study sheds light on the complex interactions among plant pathogens, biocontrol agents, and the indigenous microbial community, underscoring the necessity to account for native antibiotic-degrading organisms when applying biocontrol strategies for effective disease management.\",\"PeriodicalId\":516554,\"journal\":{\"name\":\"The ISME Journal\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The ISME Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wraf210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用产生抗生素的微生物拮抗病原体是植物病害管理的可持续方法。然而,在实验室中有效的生物防治剂在现场的效果往往会下降或变化。人们通常认为植物根际内的微生物相互作用会影响生物防治剂的效果。为了验证这一假设,我们在实地调查的基础上建立了一个三方细菌模型系统,包括抗生素生产者(解淀粉芽孢杆菌P224,枯草芽孢杆菌P165和velezensis芽孢杆菌P63),抗生素降解者(嗜麦芽窄养单胞菌P373)和细菌植物病原体(Ralstonia solanacearum PA1)。所选芽孢杆菌对番茄青枯病具有拮抗作用,可作为番茄青枯病的生物防治剂。我们证明嗜麦芽葡萄球菌通过降解芽孢杆菌分泌的脂肽类抗生素iturin、fengycin和surfactin来降低这种生物防治效果,从而作为“病原体助手”间接促进病原体入侵。进一步的转录组学和蛋白质组学分析表明,嗜麦芽葡萄球菌的脂肽失活机制涉及多药物外排系统、核糖体适应和酶水解。此外,在我们的模型系统中,种间相互作用受到养分有效性的调节,高碳源增强了芽孢杆菌对嗜麦芽葡萄球菌的干扰竞争能力,从而减轻了芽孢杆菌对茄枯病菌的生物防治的负面影响。我们的研究揭示了植物病原体、生物防治剂和本地微生物群落之间复杂的相互作用,强调了在应用生物防治策略进行有效疾病管理时考虑本地抗生素降解生物的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stenotrophomonas maltophilia impedes Bacillus biocontrol of tomato wilt disease by degrading its lipopeptide antibiotics.
Harnessing antibiotic-producing microorganisms that antagonize pathogens represents a sustainable approach for plant disease management. However, biocontrol agents that are effective in the laboratory often have diminished or variable performance in the field. It is often assumed that microbial interactions within the plant rhizosphere can influence the performance of biocontrol agents. To validate this hypothesis, we established a tripartite bacterial model system based on field investigations, involving antibiotic producers (Bacillus amyloliquefaciens P224, Bacillus subtilis P165, and Bacillus velezensis P63), an antibiotic degrader (Stenotrophomonas maltophilia P373), and a bacterial plant pathogen (Ralstonia solanacearum PA1). The selected Bacillus species antagonize R. solanacearum and act as biocontrol agents of the bacterial wilt of tomatoes caused by this pathogen. We demonstrated that S. maltophilia diminished this biocontrol effect by degrading the lipopeptide antibiotics iturin, fengycin, and surfactin secreted by Bacillus spp., thereby serving as a "pathogen helper" that indirectly facilitated pathogen invasion. Further transcriptomic and proteomic analyses revealed that the lipopeptide inactivation mechanism in S. maltophilia involved multi-drug efflux systems, ribosomal adaptation, and enzymatic hydrolysis. Additionally, the interspecies interactions in our model system are modulated by nutrient availability, with elevated carbon sources enhancing the interference competitive ability of Bacillus spp. against S. maltophilia, thereby mitigating its negative impact on the biocontrol of R. solanacearum. Our study sheds light on the complex interactions among plant pathogens, biocontrol agents, and the indigenous microbial community, underscoring the necessity to account for native antibiotic-degrading organisms when applying biocontrol strategies for effective disease management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信