{"title":"一种小分子稳定剂可以挽救GPCR中几乎所有错义变异的表面表达。","authors":"Taylor L Mighell,Ben Lehner","doi":"10.1038/s41594-025-01659-6","DOIUrl":null,"url":null,"abstract":"Reduced protein abundance is the most frequent mechanism by which rare missense variants cause disease. A promising therapeutic avenue for treating reduced abundance variants is pharmacological chaperones (PCs, also known as correctors or stabilizers), small molecules that bind to and stabilize target proteins. PCs have been approved as clinical treatments for specific variants, but protein energetics suggest their effects might be much more general. To comprehensively assess PC efficacy for variation in a given protein, it is necessary to first assign the molecular mechanism explaining all pathogenic variants, then measure the response to the PC. Here we establish such a framework for the vasopressin 2 receptor (V2R), a G-protein-coupled receptor in which loss-of-function variants cause nephrogenic diabetes insipidus (NDI). Our data show that more than half of NDI variants are poorly expressed, highlighting loss of stability as the major pathogenic mechanism. Treatment with a PC rescues the expression of 87% of destabilized variants. The non-rescued variants identify the drug's predicted binding site. Our results provide proof-of-principle that small molecule binding can rescue destabilizing variants throughout a protein's structure. The application of this principle to other proteins should allow the development of effective therapies for many different rare diseases.","PeriodicalId":18822,"journal":{"name":"Nature structural & molecular biology","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A small molecule stabilizer rescues the surface expression of nearly all missense variants in a GPCR.\",\"authors\":\"Taylor L Mighell,Ben Lehner\",\"doi\":\"10.1038/s41594-025-01659-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reduced protein abundance is the most frequent mechanism by which rare missense variants cause disease. A promising therapeutic avenue for treating reduced abundance variants is pharmacological chaperones (PCs, also known as correctors or stabilizers), small molecules that bind to and stabilize target proteins. PCs have been approved as clinical treatments for specific variants, but protein energetics suggest their effects might be much more general. To comprehensively assess PC efficacy for variation in a given protein, it is necessary to first assign the molecular mechanism explaining all pathogenic variants, then measure the response to the PC. Here we establish such a framework for the vasopressin 2 receptor (V2R), a G-protein-coupled receptor in which loss-of-function variants cause nephrogenic diabetes insipidus (NDI). Our data show that more than half of NDI variants are poorly expressed, highlighting loss of stability as the major pathogenic mechanism. Treatment with a PC rescues the expression of 87% of destabilized variants. The non-rescued variants identify the drug's predicted binding site. Our results provide proof-of-principle that small molecule binding can rescue destabilizing variants throughout a protein's structure. The application of this principle to other proteins should allow the development of effective therapies for many different rare diseases.\",\"PeriodicalId\":18822,\"journal\":{\"name\":\"Nature structural & molecular biology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature structural & molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41594-025-01659-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature structural & molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41594-025-01659-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A small molecule stabilizer rescues the surface expression of nearly all missense variants in a GPCR.
Reduced protein abundance is the most frequent mechanism by which rare missense variants cause disease. A promising therapeutic avenue for treating reduced abundance variants is pharmacological chaperones (PCs, also known as correctors or stabilizers), small molecules that bind to and stabilize target proteins. PCs have been approved as clinical treatments for specific variants, but protein energetics suggest their effects might be much more general. To comprehensively assess PC efficacy for variation in a given protein, it is necessary to first assign the molecular mechanism explaining all pathogenic variants, then measure the response to the PC. Here we establish such a framework for the vasopressin 2 receptor (V2R), a G-protein-coupled receptor in which loss-of-function variants cause nephrogenic diabetes insipidus (NDI). Our data show that more than half of NDI variants are poorly expressed, highlighting loss of stability as the major pathogenic mechanism. Treatment with a PC rescues the expression of 87% of destabilized variants. The non-rescued variants identify the drug's predicted binding site. Our results provide proof-of-principle that small molecule binding can rescue destabilizing variants throughout a protein's structure. The application of this principle to other proteins should allow the development of effective therapies for many different rare diseases.