从溶剂到催化剂:原位氨基酸类物质使PET升级回收无需添加催化剂

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiong Gao, Zhuo Wang, Minghao Zhang, Yunkai Yu, Shaoyu Zhang, Qingqing Mei
{"title":"从溶剂到催化剂:原位氨基酸类物质使PET升级回收无需添加催化剂","authors":"Xiong Gao, Zhuo Wang, Minghao Zhang, Yunkai Yu, Shaoyu Zhang, Qingqing Mei","doi":"10.1002/anie.202513723","DOIUrl":null,"url":null,"abstract":"Chemical recycling of polyethylene terephthalate (PET) offers a promising route to value‐added chemical production, yet conventional methods typically demand harsh conditions and dedicated catalysts. Here, we report a bioinspired strategy that exploits the intramolecular acid‐base synergy of amino acids for efficient PET depolymerization. Alanine functions as a bifunctional organocatalyst, enabling complete PET esterolysis by dimethyl carbonate within 3 h at 180 °C to afford dimethyl terephthalate (98%) and ethylene carbonate (80%). Extending this concept, trace water in <jats:italic>N‐</jats:italic>methyl ‐2‐pyrrolidone induces in situ generation of 4‐(methylamino)butyric acid, which emulates amino acid bifunctionality and enables catalyst‐free depolymerization under identical conditions. Density functional theory (DFT) calculations reveal an intramolecular dual‐site acid‐base mechanism, where –COO<jats:sup>−</jats:sup> and –NH<jats:sub>2</jats:sub>⁺ groups cooperatively activate methanol and PET carbonyls through hydrogen‐bonded cyclic transition states, lowering the barrier by ∼29 kcal mol<jats:sup>−1</jats:sup>. The method extends broadly to polyesters and polycarbonate, while establishing a transferable design paradigm that translates catalytic principles from nature into organocatalyst and solvent design, underscoring solvent molecular design as a general lever for sustainable catalysis and plastic upcycling.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"89 1","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Solvent to Catalyst: In Situ Amino Acid‐Like Species Enable PET Upcycling Without Added Catalysts\",\"authors\":\"Xiong Gao, Zhuo Wang, Minghao Zhang, Yunkai Yu, Shaoyu Zhang, Qingqing Mei\",\"doi\":\"10.1002/anie.202513723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemical recycling of polyethylene terephthalate (PET) offers a promising route to value‐added chemical production, yet conventional methods typically demand harsh conditions and dedicated catalysts. Here, we report a bioinspired strategy that exploits the intramolecular acid‐base synergy of amino acids for efficient PET depolymerization. Alanine functions as a bifunctional organocatalyst, enabling complete PET esterolysis by dimethyl carbonate within 3 h at 180 °C to afford dimethyl terephthalate (98%) and ethylene carbonate (80%). Extending this concept, trace water in <jats:italic>N‐</jats:italic>methyl ‐2‐pyrrolidone induces in situ generation of 4‐(methylamino)butyric acid, which emulates amino acid bifunctionality and enables catalyst‐free depolymerization under identical conditions. Density functional theory (DFT) calculations reveal an intramolecular dual‐site acid‐base mechanism, where –COO<jats:sup>−</jats:sup> and –NH<jats:sub>2</jats:sub>⁺ groups cooperatively activate methanol and PET carbonyls through hydrogen‐bonded cyclic transition states, lowering the barrier by ∼29 kcal mol<jats:sup>−1</jats:sup>. The method extends broadly to polyesters and polycarbonate, while establishing a transferable design paradigm that translates catalytic principles from nature into organocatalyst and solvent design, underscoring solvent molecular design as a general lever for sustainable catalysis and plastic upcycling.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202513723\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202513723","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚对苯二甲酸乙二醇酯(PET)的化学回收为增值化工生产提供了一条很有前途的途径,但传统方法通常需要苛刻的条件和专用的催化剂。在这里,我们报告了一种生物启发的策略,利用氨基酸的分子内酸碱协同作用进行高效的PET解聚。丙氨酸作为一种双功能有机催化剂,在180°C下,通过碳酸二甲酯在3小时内完成PET酯水解,得到对苯二甲酸二甲酯(98%)和碳酸乙烯(80%)。扩展这一概念,N -甲基- 2 -吡咯烷酮中的微量水诱导原位生成4 -(甲氨基)丁酸,模拟氨基酸双功能,并在相同条件下实现无催化剂解聚。密度泛函数理论(DFT)计算揭示了分子内双位点酸碱机制,其中-COO -和-NH2 +基团通过氢键环过渡态协同激活甲醇和PET羰基,降低势垒约29 kcal mol - 1。该方法广泛应用于聚酯和聚碳酸酯,同时建立了一种可转移的设计范式,将自然界的催化原理转化为有机催化剂和溶剂设计,强调溶剂分子设计是可持续催化和塑料升级回收的一般杠杆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Solvent to Catalyst: In Situ Amino Acid‐Like Species Enable PET Upcycling Without Added Catalysts
Chemical recycling of polyethylene terephthalate (PET) offers a promising route to value‐added chemical production, yet conventional methods typically demand harsh conditions and dedicated catalysts. Here, we report a bioinspired strategy that exploits the intramolecular acid‐base synergy of amino acids for efficient PET depolymerization. Alanine functions as a bifunctional organocatalyst, enabling complete PET esterolysis by dimethyl carbonate within 3 h at 180 °C to afford dimethyl terephthalate (98%) and ethylene carbonate (80%). Extending this concept, trace water in N‐methyl ‐2‐pyrrolidone induces in situ generation of 4‐(methylamino)butyric acid, which emulates amino acid bifunctionality and enables catalyst‐free depolymerization under identical conditions. Density functional theory (DFT) calculations reveal an intramolecular dual‐site acid‐base mechanism, where –COO and –NH2⁺ groups cooperatively activate methanol and PET carbonyls through hydrogen‐bonded cyclic transition states, lowering the barrier by ∼29 kcal mol−1. The method extends broadly to polyesters and polycarbonate, while establishing a transferable design paradigm that translates catalytic principles from nature into organocatalyst and solvent design, underscoring solvent molecular design as a general lever for sustainable catalysis and plastic upcycling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信