Bi - O桥触发ZnIn2S4固有In位的晶格应变-电子协同作用,以促进太阳能到H2O2的转化

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fangyuan Chen, Gaoqing Cao, Qian Liu, Yingnan Duan, Weizun Li, Zhurui Shen
{"title":"Bi - O桥触发ZnIn2S4固有In位的晶格应变-电子协同作用,以促进太阳能到H2O2的转化","authors":"Fangyuan Chen, Gaoqing Cao, Qian Liu, Yingnan Duan, Weizun Li, Zhurui Shen","doi":"10.1002/anie.202518232","DOIUrl":null,"url":null,"abstract":"Artificial H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> photosynthesis without sacrificial agents represents a promising yet challenging route for sustainable chemical production, hindered by low solar‐to‐chemical conversion (SCC) efficiency (natural photosynthesis is only ∼0.1%). Notably, the abundant inherent active sites within base semiconductors remain substantially underutilized. Here, we incorporate Bi into ZnIn<jats:sub>2</jats:sub>S<jats:sub>4</jats:sub> (ZIS) lattices through atomic‐level Bi─O coordination, activating inherent In sites via synergistic lattice strain and electron rearrangement. Multiscale characterization confirms the formation of BiO<jats:sub>2</jats:sub>S<jats:sub>2</jats:sub>–ZIS with quantified 1.51% lattice elongation. Integrated theoretical calculations and in situ spectroscopic analyses reveal that Bi─O coordination increases electron density at adjacent In sites, which lowers the <jats:italic>p</jats:italic>‐band center and enhances carrier separation. Meanwhile, lattice strain strengthens Bi─O orbital hybridization and weakens In─O covalency. Thus, these effects cooperatively optimize carrier dynamics. Then, the O<jats:sub>2</jats:sub> adsorption is Pauling‐type at In site to Yeager‐type adsorption at the In─Bi dual sites. Simultaneously, Bi─O bridges function as proton reservoirs to facilitate *OOH formation and *H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> synthesis through enhanced Coulombic interactions. The resulting strain‐electron synergy achieves an unprecedented H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> production rate of 6.06 mmol g<jats:sup>−1</jats:sup> h<jats:sup>−1</jats:sup> and 2.32% SCC efficiency, surpassing all reported inorganic semiconductor photocatalysts. This work demonstrates exceptional photocatalytic performance and establishes a highly effective strategy for inherent site activation.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"82 1","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bi─O Bridges Trigger Lattice Strain‐Electronic Synergy at Inherent In Sites in ZnIn2S4 for Boosting Solar‐to‐H2O2 Conversion\",\"authors\":\"Fangyuan Chen, Gaoqing Cao, Qian Liu, Yingnan Duan, Weizun Li, Zhurui Shen\",\"doi\":\"10.1002/anie.202518232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> photosynthesis without sacrificial agents represents a promising yet challenging route for sustainable chemical production, hindered by low solar‐to‐chemical conversion (SCC) efficiency (natural photosynthesis is only ∼0.1%). Notably, the abundant inherent active sites within base semiconductors remain substantially underutilized. Here, we incorporate Bi into ZnIn<jats:sub>2</jats:sub>S<jats:sub>4</jats:sub> (ZIS) lattices through atomic‐level Bi─O coordination, activating inherent In sites via synergistic lattice strain and electron rearrangement. Multiscale characterization confirms the formation of BiO<jats:sub>2</jats:sub>S<jats:sub>2</jats:sub>–ZIS with quantified 1.51% lattice elongation. Integrated theoretical calculations and in situ spectroscopic analyses reveal that Bi─O coordination increases electron density at adjacent In sites, which lowers the <jats:italic>p</jats:italic>‐band center and enhances carrier separation. Meanwhile, lattice strain strengthens Bi─O orbital hybridization and weakens In─O covalency. Thus, these effects cooperatively optimize carrier dynamics. Then, the O<jats:sub>2</jats:sub> adsorption is Pauling‐type at In site to Yeager‐type adsorption at the In─Bi dual sites. Simultaneously, Bi─O bridges function as proton reservoirs to facilitate *OOH formation and *H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> synthesis through enhanced Coulombic interactions. The resulting strain‐electron synergy achieves an unprecedented H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> production rate of 6.06 mmol g<jats:sup>−1</jats:sup> h<jats:sup>−1</jats:sup> and 2.32% SCC efficiency, surpassing all reported inorganic semiconductor photocatalysts. This work demonstrates exceptional photocatalytic performance and establishes a highly effective strategy for inherent site activation.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202518232\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202518232","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

不使用牺牲剂的人工H2O2光合作用是一种有希望但具有挑战性的可持续化工生产途径,其阻碍因素是太阳能-化学转化(SCC)效率低(自然光合作用仅为~ 0.1%)。值得注意的是,基础半导体中丰富的固有活性位点仍未得到充分利用。在这里,我们通过原子级Bi─O配位将Bi结合到ZnIn2S4 (ZIS)晶格中,通过协同晶格应变和电子重排激活固有的In位。多尺度表征证实了BiO2S2-ZIS的形成,量化的晶格伸长率为1.51%。综合理论计算和原位光谱分析表明,Bi─O配位增加了相邻in位的电子密度,从而降低了p带中心,增强了载流子分离。同时,晶格应变增强了Bi─O轨道杂化,减弱了In─O共价。因此,这些效应协同优化载流子动力学。O2在In位的吸附为Pauling型,在In─Bi双位的吸附为Yeager型。同时,Bi─O桥作为质子储存器,通过增强的库仑相互作用促进*OOH的形成和*H2O2的合成。由此产生的应变-电子协同作用实现了前所未有的H2O2产率6.06 mmol g−1 h−1和2.32%的SCC效率,超过了所有报道的无机半导体光催化剂。这项工作展示了卓越的光催化性能,并建立了一种非常有效的内在位点激活策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bi─O Bridges Trigger Lattice Strain‐Electronic Synergy at Inherent In Sites in ZnIn2S4 for Boosting Solar‐to‐H2O2 Conversion
Artificial H2O2 photosynthesis without sacrificial agents represents a promising yet challenging route for sustainable chemical production, hindered by low solar‐to‐chemical conversion (SCC) efficiency (natural photosynthesis is only ∼0.1%). Notably, the abundant inherent active sites within base semiconductors remain substantially underutilized. Here, we incorporate Bi into ZnIn2S4 (ZIS) lattices through atomic‐level Bi─O coordination, activating inherent In sites via synergistic lattice strain and electron rearrangement. Multiscale characterization confirms the formation of BiO2S2–ZIS with quantified 1.51% lattice elongation. Integrated theoretical calculations and in situ spectroscopic analyses reveal that Bi─O coordination increases electron density at adjacent In sites, which lowers the p‐band center and enhances carrier separation. Meanwhile, lattice strain strengthens Bi─O orbital hybridization and weakens In─O covalency. Thus, these effects cooperatively optimize carrier dynamics. Then, the O2 adsorption is Pauling‐type at In site to Yeager‐type adsorption at the In─Bi dual sites. Simultaneously, Bi─O bridges function as proton reservoirs to facilitate *OOH formation and *H2O2 synthesis through enhanced Coulombic interactions. The resulting strain‐electron synergy achieves an unprecedented H2O2 production rate of 6.06 mmol g−1 h−1 and 2.32% SCC efficiency, surpassing all reported inorganic semiconductor photocatalysts. This work demonstrates exceptional photocatalytic performance and establishes a highly effective strategy for inherent site activation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信