急性白血病的快速表观基因组分类。

IF 29 1区 生物学 Q1 GENETICS & HEREDITY
Til L Steinicke,Salvatore Benfatto,Maria R Capilla-Guerra,Andre B Monteleone,Jonathan H Young,Subha Shankar,Phillip D Michaels,Harrison K Tsai,Jonathan D Good,Antonia Kreso,Peter van Galen,Christoph Schliemann,Evan C Chen,Gabriel K Griffin,Volker Hovestadt
{"title":"急性白血病的快速表观基因组分类。","authors":"Til L Steinicke,Salvatore Benfatto,Maria R Capilla-Guerra,Andre B Monteleone,Jonathan H Young,Subha Shankar,Phillip D Michaels,Harrison K Tsai,Jonathan D Good,Antonia Kreso,Peter van Galen,Christoph Schliemann,Evan C Chen,Gabriel K Griffin,Volker Hovestadt","doi":"10.1038/s41588-025-02321-z","DOIUrl":null,"url":null,"abstract":"Acute leukemia requires precise molecular classification and urgent treatment. However, standard-of-care diagnostic tests are time-intensive and do not capture the full spectrum of acute leukemia heterogeneity. Here, we developed a framework to classify acute leukemia using genome-wide DNA methylation profiling. We first assembled a comprehensive reference cohort (n = 2,540 samples) and defined 38 methylation classes. Methylation-based classification matched standard-pathology lineage classification in most cases and revealed heterogeneity in addition to that captured by genetic categories. Using this reference, we developed a neural network (MARLIN; methylation- and AI-guided rapid leukemia subtype inference) for acute leukemia classification from sparse DNA methylation profiles. In retrospective cohorts profiled by nanopore sequencing, high-confidence predictions were concordant with conventional diagnoses in 25 out of 26 cases. Real-time MARLIN classification in patients with suspected acute leukemia provided accurate predictions in five out of five cases, which were typically generated within 2 h of sample receipt. In summary, we present a framework for rapid acute leukemia classification that complements and enhances standard-of-care diagnostics.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"61 1","pages":""},"PeriodicalIF":29.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid epigenomic classification of acute leukemia.\",\"authors\":\"Til L Steinicke,Salvatore Benfatto,Maria R Capilla-Guerra,Andre B Monteleone,Jonathan H Young,Subha Shankar,Phillip D Michaels,Harrison K Tsai,Jonathan D Good,Antonia Kreso,Peter van Galen,Christoph Schliemann,Evan C Chen,Gabriel K Griffin,Volker Hovestadt\",\"doi\":\"10.1038/s41588-025-02321-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acute leukemia requires precise molecular classification and urgent treatment. However, standard-of-care diagnostic tests are time-intensive and do not capture the full spectrum of acute leukemia heterogeneity. Here, we developed a framework to classify acute leukemia using genome-wide DNA methylation profiling. We first assembled a comprehensive reference cohort (n = 2,540 samples) and defined 38 methylation classes. Methylation-based classification matched standard-pathology lineage classification in most cases and revealed heterogeneity in addition to that captured by genetic categories. Using this reference, we developed a neural network (MARLIN; methylation- and AI-guided rapid leukemia subtype inference) for acute leukemia classification from sparse DNA methylation profiles. In retrospective cohorts profiled by nanopore sequencing, high-confidence predictions were concordant with conventional diagnoses in 25 out of 26 cases. Real-time MARLIN classification in patients with suspected acute leukemia provided accurate predictions in five out of five cases, which were typically generated within 2 h of sample receipt. In summary, we present a framework for rapid acute leukemia classification that complements and enhances standard-of-care diagnostics.\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":29.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41588-025-02321-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41588-025-02321-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

急性白血病需要精确的分子分类和紧急治疗。然而,标准诊断测试是费时的,并不能捕获急性白血病异质性的全谱。在这里,我们开发了一个使用全基因组DNA甲基化分析对急性白血病进行分类的框架。我们首先建立了一个全面的参考队列(n = 2540个样本),并定义了38个甲基化类别。在大多数情况下,基于甲基化的分类与标准病理谱系分类相匹配,并且除了遗传类别所捕获的异质性外,还揭示了异质性。利用这一参考文献,我们开发了一个神经网络(MARLIN;甲基化和人工智能引导的快速白血病亚型推断),用于从稀疏的DNA甲基化谱中对急性白血病进行分类。在纳米孔测序的回顾性队列中,26例中有25例的高置信度预测与常规诊断一致。疑似急性白血病患者的实时MARLIN分类在5例中有5例提供了准确的预测,这些预测通常在样品收到后2小时内产生。总之,我们提出了一个框架快速急性白血病分类,补充和提高标准护理诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid epigenomic classification of acute leukemia.
Acute leukemia requires precise molecular classification and urgent treatment. However, standard-of-care diagnostic tests are time-intensive and do not capture the full spectrum of acute leukemia heterogeneity. Here, we developed a framework to classify acute leukemia using genome-wide DNA methylation profiling. We first assembled a comprehensive reference cohort (n = 2,540 samples) and defined 38 methylation classes. Methylation-based classification matched standard-pathology lineage classification in most cases and revealed heterogeneity in addition to that captured by genetic categories. Using this reference, we developed a neural network (MARLIN; methylation- and AI-guided rapid leukemia subtype inference) for acute leukemia classification from sparse DNA methylation profiles. In retrospective cohorts profiled by nanopore sequencing, high-confidence predictions were concordant with conventional diagnoses in 25 out of 26 cases. Real-time MARLIN classification in patients with suspected acute leukemia provided accurate predictions in five out of five cases, which were typically generated within 2 h of sample receipt. In summary, we present a framework for rapid acute leukemia classification that complements and enhances standard-of-care diagnostics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature genetics
Nature genetics 生物-遗传学
CiteScore
43.00
自引率
2.60%
发文量
241
审稿时长
3 months
期刊介绍: Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation. Integrative genetic topics comprise, but are not limited to: -Genes in the pathology of human disease -Molecular analysis of simple and complex genetic traits -Cancer genetics -Agricultural genomics -Developmental genetics -Regulatory variation in gene expression -Strategies and technologies for extracting function from genomic data -Pharmacological genomics -Genome evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信