量化尺寸对CsPbBr3纳米晶薄膜热输运的影响。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jee Yung Park, , , Du Chen, , , Shunran Li, , , Yi Xia, , , Benjamin T. Diroll, , and , Peijun Guo*, 
{"title":"量化尺寸对CsPbBr3纳米晶薄膜热输运的影响。","authors":"Jee Yung Park,&nbsp;, ,&nbsp;Du Chen,&nbsp;, ,&nbsp;Shunran Li,&nbsp;, ,&nbsp;Yi Xia,&nbsp;, ,&nbsp;Benjamin T. Diroll,&nbsp;, and ,&nbsp;Peijun Guo*,&nbsp;","doi":"10.1021/acs.nanolett.5c03215","DOIUrl":null,"url":null,"abstract":"<p >Colloidal lead halide perovskite nanocrystals (LHP NCs) are promising semiconductor materials for optoelectronic applications due to their strong quantum confinement, near-unity photoluminescence quantum yields, and tunable emission characteristics. However, their modest thermal stability remains a challenge, particularly at smaller core diameters due to enhanced phonon scattering at inorganic core-organic ligand interfaces. In this study, we directly quantify size-dependent thermal conductivity (κ) in lecithin-capped CsPbBr<sub>3</sub> NC thin films using a transducer-free, vibrational pump–visible probe (VPVP) spectroscopy technique. A mid-infrared pump thermally excites the ligand shell, while a broadband probe tracks transient reflectance change correlated to lattice temperature decay. Finite-element modeling of the decay dynamics yields κ values from 0.13 to 0.16 W·m<sup>–1</sup>·K<sup>–1</sup> for NC films with sub-10 nm core diameter, significantly lower than those of its bulk counterpart. A steep κ suppression with decreasing NC size emphasizes the dominant role of ligand shells and boundary effects in thermal transport.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 39","pages":"14286–14292"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying Size Effects on Thermal Transport in CsPbBr3 Nanocrystal Films\",\"authors\":\"Jee Yung Park,&nbsp;, ,&nbsp;Du Chen,&nbsp;, ,&nbsp;Shunran Li,&nbsp;, ,&nbsp;Yi Xia,&nbsp;, ,&nbsp;Benjamin T. Diroll,&nbsp;, and ,&nbsp;Peijun Guo*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c03215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Colloidal lead halide perovskite nanocrystals (LHP NCs) are promising semiconductor materials for optoelectronic applications due to their strong quantum confinement, near-unity photoluminescence quantum yields, and tunable emission characteristics. However, their modest thermal stability remains a challenge, particularly at smaller core diameters due to enhanced phonon scattering at inorganic core-organic ligand interfaces. In this study, we directly quantify size-dependent thermal conductivity (κ) in lecithin-capped CsPbBr<sub>3</sub> NC thin films using a transducer-free, vibrational pump–visible probe (VPVP) spectroscopy technique. A mid-infrared pump thermally excites the ligand shell, while a broadband probe tracks transient reflectance change correlated to lattice temperature decay. Finite-element modeling of the decay dynamics yields κ values from 0.13 to 0.16 W·m<sup>–1</sup>·K<sup>–1</sup> for NC films with sub-10 nm core diameter, significantly lower than those of its bulk counterpart. A steep κ suppression with decreasing NC size emphasizes the dominant role of ligand shells and boundary effects in thermal transport.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 39\",\"pages\":\"14286–14292\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03215\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03215","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

胶体卤化铅钙钛矿纳米晶体(LHP NCs)由于其强量子约束、近单位光致发光量子产率和可调谐的发射特性,是光电子应用中很有前途的半导体材料。然而,它们适度的热稳定性仍然是一个挑战,特别是在较小的核直径下,由于无机核-有机配体界面上声子散射增强。在这项研究中,我们使用无传感器、振动泵可见探针(VPVP)光谱技术直接量化了卵磷脂覆盖的CsPbBr3 NC薄膜中尺寸相关的导热系数(κ)。中红外泵浦热激发配体壳,而宽带探针跟踪与晶格温度衰减相关的瞬态反射变化。基于有限元模型的衰减动力学结果表明,芯径低于10 nm的NC薄膜的κ值为0.13 ~ 0.16 W·m-1·K-1,显著低于体材薄膜。随着NC尺寸的减小,κ的急剧抑制强调了配体壳和边界效应在热输运中的主导作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Quantifying Size Effects on Thermal Transport in CsPbBr3 Nanocrystal Films

Quantifying Size Effects on Thermal Transport in CsPbBr3 Nanocrystal Films

Colloidal lead halide perovskite nanocrystals (LHP NCs) are promising semiconductor materials for optoelectronic applications due to their strong quantum confinement, near-unity photoluminescence quantum yields, and tunable emission characteristics. However, their modest thermal stability remains a challenge, particularly at smaller core diameters due to enhanced phonon scattering at inorganic core-organic ligand interfaces. In this study, we directly quantify size-dependent thermal conductivity (κ) in lecithin-capped CsPbBr3 NC thin films using a transducer-free, vibrational pump–visible probe (VPVP) spectroscopy technique. A mid-infrared pump thermally excites the ligand shell, while a broadband probe tracks transient reflectance change correlated to lattice temperature decay. Finite-element modeling of the decay dynamics yields κ values from 0.13 to 0.16 W·m–1·K–1 for NC films with sub-10 nm core diameter, significantly lower than those of its bulk counterpart. A steep κ suppression with decreasing NC size emphasizes the dominant role of ligand shells and boundary effects in thermal transport.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信