Seong Guk Park,Jung-Un Park,Esteban Dodero-Rojas,John A Bryant,Geetha Sankaranarayanan,Elizabeth H Kellogg
{"title":"对rna引导转座子的活性和特异性的全面分析揭示了设计改进变体的机会。","authors":"Seong Guk Park,Jung-Un Park,Esteban Dodero-Rojas,John A Bryant,Geetha Sankaranarayanan,Elizabeth H Kellogg","doi":"10.1093/nar/gkaf917","DOIUrl":null,"url":null,"abstract":"Recently discovered CRISPR-associated transposons (CASTs) are natural RNA-guided DNA transposition systems capable of single-step genomic integration of large DNA cargo. Wild-type CASTs exhibit low integration activity in heterologous systems; therefore, engineering efforts are required to develop therapeutically relevant tools. Here we developed a high-throughput dual genetic screen capable of accurately quantifying the relative activity and specificity of a large pool of CAST variants. Under the conditions of our screen, we discovered that the wild-type V-K CAST system can consistently achieve between 88% and 95% on-site targeting specificity. We used site-saturation mutagenesis of the conserved core transposition machinery (TnsB, TnsC, and TniQ) to reveal novel mechanistic insights into the function of these transposon proteins. Furthermore, we found that different components have varying trade-offs between activity and specificity, a critical aspect overlooked in conventional screening pipelines. These findings provide clear engineering principles for further optimization of CASTs. Finally, we identified several mutations that, together, enhance CAST activity up to four-fold while minimally impacting targeting specificity. These methods are a powerful tool to characterize the sequence-function landscape across multiple functional parameters while also providing a robust platform for developing enhanced genome-editing tools.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"61 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive profiling of activity and specificity of RNA-guided transposons reveals opportunities to engineer improved variants.\",\"authors\":\"Seong Guk Park,Jung-Un Park,Esteban Dodero-Rojas,John A Bryant,Geetha Sankaranarayanan,Elizabeth H Kellogg\",\"doi\":\"10.1093/nar/gkaf917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently discovered CRISPR-associated transposons (CASTs) are natural RNA-guided DNA transposition systems capable of single-step genomic integration of large DNA cargo. Wild-type CASTs exhibit low integration activity in heterologous systems; therefore, engineering efforts are required to develop therapeutically relevant tools. Here we developed a high-throughput dual genetic screen capable of accurately quantifying the relative activity and specificity of a large pool of CAST variants. Under the conditions of our screen, we discovered that the wild-type V-K CAST system can consistently achieve between 88% and 95% on-site targeting specificity. We used site-saturation mutagenesis of the conserved core transposition machinery (TnsB, TnsC, and TniQ) to reveal novel mechanistic insights into the function of these transposon proteins. Furthermore, we found that different components have varying trade-offs between activity and specificity, a critical aspect overlooked in conventional screening pipelines. These findings provide clear engineering principles for further optimization of CASTs. Finally, we identified several mutations that, together, enhance CAST activity up to four-fold while minimally impacting targeting specificity. These methods are a powerful tool to characterize the sequence-function landscape across multiple functional parameters while also providing a robust platform for developing enhanced genome-editing tools.\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkaf917\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf917","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Comprehensive profiling of activity and specificity of RNA-guided transposons reveals opportunities to engineer improved variants.
Recently discovered CRISPR-associated transposons (CASTs) are natural RNA-guided DNA transposition systems capable of single-step genomic integration of large DNA cargo. Wild-type CASTs exhibit low integration activity in heterologous systems; therefore, engineering efforts are required to develop therapeutically relevant tools. Here we developed a high-throughput dual genetic screen capable of accurately quantifying the relative activity and specificity of a large pool of CAST variants. Under the conditions of our screen, we discovered that the wild-type V-K CAST system can consistently achieve between 88% and 95% on-site targeting specificity. We used site-saturation mutagenesis of the conserved core transposition machinery (TnsB, TnsC, and TniQ) to reveal novel mechanistic insights into the function of these transposon proteins. Furthermore, we found that different components have varying trade-offs between activity and specificity, a critical aspect overlooked in conventional screening pipelines. These findings provide clear engineering principles for further optimization of CASTs. Finally, we identified several mutations that, together, enhance CAST activity up to four-fold while minimally impacting targeting specificity. These methods are a powerful tool to characterize the sequence-function landscape across multiple functional parameters while also providing a robust platform for developing enhanced genome-editing tools.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.