Alan Y. L. Jiang, Andrew R. Yale, J. Nicole Hanamoto, Nicole S. Lav, Vi Phuong Dang, Clarissa C. Ro, Christopher R. Douglas, Kaijun Di, Jacob Deyell, Daniela A. Bota, Lisa A. Flanagan
{"title":"胶质瘤化疗耐药与膜电生理特性和糖基化有关","authors":"Alan Y. L. Jiang, Andrew R. Yale, J. Nicole Hanamoto, Nicole S. Lav, Vi Phuong Dang, Clarissa C. Ro, Christopher R. Douglas, Kaijun Di, Jacob Deyell, Daniela A. Bota, Lisa A. Flanagan","doi":"10.1002/btm2.70069","DOIUrl":null,"url":null,"abstract":"Diffuse gliomas are brain tumors that include oligodendroglioma, astrocytoma, and glioblastoma (GBM), the most common and deadly primary brain tumor. A major challenge in glioma treatment is resistance to the first‐line chemotherapeutic, temozolomide (TMZ). Plasma membrane properties of cells with increased chemotherapeutic resistance are not well understood, despite the fact that the membrane is the first point of contact with the environment and greatly shapes cell behavior. Plasma membrane glycosylation impacts cell function, and we found significant differences in glycosylation of TMZ‐resistant cells. We further identified plasma membrane electrophysiological properties predicting glioma cell TMZ resistance. We enriched cells with higher TMZ resistance by sorting glioma cells based on electrophysiological properties, indicating the relevance of membrane properties to chemotherapeutic resistance. These findings could lead to rapid separation methods for patient tumor cells, a better understanding of the molecular profiles of resistant cells, and novel treatment options for gliomas.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"18 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glioma chemotherapeutic resistance is tied to membrane electrophysiological properties and glycosylation\",\"authors\":\"Alan Y. L. Jiang, Andrew R. Yale, J. Nicole Hanamoto, Nicole S. Lav, Vi Phuong Dang, Clarissa C. Ro, Christopher R. Douglas, Kaijun Di, Jacob Deyell, Daniela A. Bota, Lisa A. Flanagan\",\"doi\":\"10.1002/btm2.70069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diffuse gliomas are brain tumors that include oligodendroglioma, astrocytoma, and glioblastoma (GBM), the most common and deadly primary brain tumor. A major challenge in glioma treatment is resistance to the first‐line chemotherapeutic, temozolomide (TMZ). Plasma membrane properties of cells with increased chemotherapeutic resistance are not well understood, despite the fact that the membrane is the first point of contact with the environment and greatly shapes cell behavior. Plasma membrane glycosylation impacts cell function, and we found significant differences in glycosylation of TMZ‐resistant cells. We further identified plasma membrane electrophysiological properties predicting glioma cell TMZ resistance. We enriched cells with higher TMZ resistance by sorting glioma cells based on electrophysiological properties, indicating the relevance of membrane properties to chemotherapeutic resistance. These findings could lead to rapid separation methods for patient tumor cells, a better understanding of the molecular profiles of resistant cells, and novel treatment options for gliomas.\",\"PeriodicalId\":9263,\"journal\":{\"name\":\"Bioengineering & Translational Medicine\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering & Translational Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/btm2.70069\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering & Translational Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btm2.70069","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Glioma chemotherapeutic resistance is tied to membrane electrophysiological properties and glycosylation
Diffuse gliomas are brain tumors that include oligodendroglioma, astrocytoma, and glioblastoma (GBM), the most common and deadly primary brain tumor. A major challenge in glioma treatment is resistance to the first‐line chemotherapeutic, temozolomide (TMZ). Plasma membrane properties of cells with increased chemotherapeutic resistance are not well understood, despite the fact that the membrane is the first point of contact with the environment and greatly shapes cell behavior. Plasma membrane glycosylation impacts cell function, and we found significant differences in glycosylation of TMZ‐resistant cells. We further identified plasma membrane electrophysiological properties predicting glioma cell TMZ resistance. We enriched cells with higher TMZ resistance by sorting glioma cells based on electrophysiological properties, indicating the relevance of membrane properties to chemotherapeutic resistance. These findings could lead to rapid separation methods for patient tumor cells, a better understanding of the molecular profiles of resistant cells, and novel treatment options for gliomas.
期刊介绍:
Bioengineering & Translational Medicine, an official, peer-reviewed online open-access journal of the American Institute of Chemical Engineers (AIChE) and the Society for Biological Engineering (SBE), focuses on how chemical and biological engineering approaches drive innovative technologies and solutions that impact clinical practice and commercial healthcare products.