{"title":"MyoD的两面:肌发生过程中基因表达的抑制因子和激活因子","authors":"Carmen Birchmeier","doi":"10.1101/gad.353232.125","DOIUrl":null,"url":null,"abstract":"MyoD is well known for its ability to reprogram a broad range of cell types into myogenic cells and for its pioneer function in activating the myogenic program during muscle development and regeneration. The basic helix–loop–helix (bHLH) protein achieves this by directly binding to E-boxes in DNA and recruiting proteins like histone acetyltransferases and the SWI/SNF chromatin remodeling complex. Interestingly, Nicoletti and colleagues (doi:10.1101/gad.352708.125) report in this issue of <em>Genes & Development</em> an unexpected finding; namely, that MyoD can also act as a repressor. This repressive activity is E-box-independent, meaning that MyoD can be indirectly recruited to distinct sites in chromatin. Transcription factor motifs enriched at these sites correspond to E2F, NF-Y, and Jun/Fos motifs. The genes that are repressed by this noncanonical MyoD function control nonmyogenic fates and participate in cell cycle regulation as well as proliferation. At such sites, MyoD binding is associated with chromatin compaction and repression of transcription.","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":"8 1","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The two faces of MyoD: repressor and activator of gene expression during myogenesis\",\"authors\":\"Carmen Birchmeier\",\"doi\":\"10.1101/gad.353232.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MyoD is well known for its ability to reprogram a broad range of cell types into myogenic cells and for its pioneer function in activating the myogenic program during muscle development and regeneration. The basic helix–loop–helix (bHLH) protein achieves this by directly binding to E-boxes in DNA and recruiting proteins like histone acetyltransferases and the SWI/SNF chromatin remodeling complex. Interestingly, Nicoletti and colleagues (doi:10.1101/gad.352708.125) report in this issue of <em>Genes & Development</em> an unexpected finding; namely, that MyoD can also act as a repressor. This repressive activity is E-box-independent, meaning that MyoD can be indirectly recruited to distinct sites in chromatin. Transcription factor motifs enriched at these sites correspond to E2F, NF-Y, and Jun/Fos motifs. The genes that are repressed by this noncanonical MyoD function control nonmyogenic fates and participate in cell cycle regulation as well as proliferation. At such sites, MyoD binding is associated with chromatin compaction and repression of transcription.\",\"PeriodicalId\":12591,\"journal\":{\"name\":\"Genes & development\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/gad.353232.125\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gad.353232.125","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The two faces of MyoD: repressor and activator of gene expression during myogenesis
MyoD is well known for its ability to reprogram a broad range of cell types into myogenic cells and for its pioneer function in activating the myogenic program during muscle development and regeneration. The basic helix–loop–helix (bHLH) protein achieves this by directly binding to E-boxes in DNA and recruiting proteins like histone acetyltransferases and the SWI/SNF chromatin remodeling complex. Interestingly, Nicoletti and colleagues (doi:10.1101/gad.352708.125) report in this issue of Genes & Development an unexpected finding; namely, that MyoD can also act as a repressor. This repressive activity is E-box-independent, meaning that MyoD can be indirectly recruited to distinct sites in chromatin. Transcription factor motifs enriched at these sites correspond to E2F, NF-Y, and Jun/Fos motifs. The genes that are repressed by this noncanonical MyoD function control nonmyogenic fates and participate in cell cycle regulation as well as proliferation. At such sites, MyoD binding is associated with chromatin compaction and repression of transcription.
期刊介绍:
Genes & Development is a research journal published in association with The Genetics Society. It publishes high-quality research papers in the areas of molecular biology, molecular genetics, and related fields. The journal features various research formats including Research papers, short Research Communications, and Resource/Methodology papers.
Genes & Development has gained recognition and is considered as one of the Top Five Research Journals in the field of Molecular Biology and Genetics. It has an impressive Impact Factor of 12.89. The journal is ranked #2 among Developmental Biology research journals, #5 in Genetics and Heredity, and is among the Top 20 in Cell Biology (according to ISI Journal Citation Reports®, 2021).