色氨酸残基在ii型光合反应中心的电子转移和光保护中的能量学。

IF 3.8 Q2 MULTIDISCIPLINARY SCIENCES
Tomoyasu Noji, Keisuke Saito, Hiroshi Ishikita
{"title":"色氨酸残基在ii型光合反应中心的电子转移和光保护中的能量学。","authors":"Tomoyasu Noji, Keisuke Saito, Hiroshi Ishikita","doi":"10.1093/pnasnexus/pgaf278","DOIUrl":null,"url":null,"abstract":"<p><p>Tryptophan is the strongest UV chromophore in proteins, and its biosynthesis is the most energy-consuming among all amino acids. In the transmembrane region of purple bacterial photosynthetic reaction centers (PbRC), tryptophan residues are densely concentrated near the inactive electron-transfer branch in subunit M, forming part of the carotenoid binding site. We investigated the redox potentials (<i>E</i> <sub>m</sub>) of tryptophan residues in PbRC and O<sub>2</sub>-evolving photosystem II (PSII) by solving the linear Poisson-Boltzmann equation, considering equilibrium with all titratable sites in the entire protein. The tryptophan mediating superexchange electron transfer between the active (bacterio)pheophytin and primary quinone exhibits the highest <i>E</i> <sub>m</sub> value in both PbRC and PSII. In contrast, in PSII, D1-Trp14, oxidized under strong light to trigger the degradation of photodamaged D1 protein, has the lowest <i>E</i> <sub>m</sub> value. In PbRC, a chain of tryptophan residues near the inactive branch forms an <i>E</i> <sub>m</sub> cascade. Quantum mechanical/molecular mechanical calculations suggest that this chain enables electron hole hopping toward the carotenoid, effectively dissipating harmful UV energy. This mechanism likely reflects the photoprotective strategy of PbRC, focusing on UV tolerance rather than oxidative stress.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":"4 9","pages":"pgaf278"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445680/pdf/","citationCount":"0","resultStr":"{\"title\":\"Energetics of tryptophan residues in electron transfer and photoprotection of type-II photosynthetic reaction centers.\",\"authors\":\"Tomoyasu Noji, Keisuke Saito, Hiroshi Ishikita\",\"doi\":\"10.1093/pnasnexus/pgaf278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tryptophan is the strongest UV chromophore in proteins, and its biosynthesis is the most energy-consuming among all amino acids. In the transmembrane region of purple bacterial photosynthetic reaction centers (PbRC), tryptophan residues are densely concentrated near the inactive electron-transfer branch in subunit M, forming part of the carotenoid binding site. We investigated the redox potentials (<i>E</i> <sub>m</sub>) of tryptophan residues in PbRC and O<sub>2</sub>-evolving photosystem II (PSII) by solving the linear Poisson-Boltzmann equation, considering equilibrium with all titratable sites in the entire protein. The tryptophan mediating superexchange electron transfer between the active (bacterio)pheophytin and primary quinone exhibits the highest <i>E</i> <sub>m</sub> value in both PbRC and PSII. In contrast, in PSII, D1-Trp14, oxidized under strong light to trigger the degradation of photodamaged D1 protein, has the lowest <i>E</i> <sub>m</sub> value. In PbRC, a chain of tryptophan residues near the inactive branch forms an <i>E</i> <sub>m</sub> cascade. Quantum mechanical/molecular mechanical calculations suggest that this chain enables electron hole hopping toward the carotenoid, effectively dissipating harmful UV energy. This mechanism likely reflects the photoprotective strategy of PbRC, focusing on UV tolerance rather than oxidative stress.</p>\",\"PeriodicalId\":74468,\"journal\":{\"name\":\"PNAS nexus\",\"volume\":\"4 9\",\"pages\":\"pgaf278\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445680/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNAS nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/pnasnexus/pgaf278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgaf278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

色氨酸是蛋白质中最强的紫外发色团,其生物合成是所有氨基酸中能量消耗最大的。在紫色细菌光合反应中心(PbRC)的跨膜区,色氨酸残基密集地聚集在M亚基的无活性电子转移分支附近,形成部分类胡萝卜素结合位点。我们通过求解线性泊松-玻尔兹曼方程,考虑到整个蛋白质中所有可滴定位点的平衡,研究了色氨酸残基在PbRC和o2进化光系统II (PSII)中的氧化还原电位(em)。色氨酸介导活性(细菌)叶绿素与原生醌之间的超交换电子转移,在PbRC和PSII中均表现出最高的E m值。相比之下,在PSII中,D1- trp14在强光下氧化触发光损伤D1蛋白的降解,其E m值最低。在PbRC中,一条靠近无活性分支的色氨酸残基链形成一个E - m级联。量子力学/分子力学计算表明,这条链使电子空穴向类胡萝卜素跳跃,有效地消散有害的紫外线能量。这一机制可能反映了PbRC的光保护策略,侧重于紫外线耐受性而不是氧化应激。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energetics of tryptophan residues in electron transfer and photoprotection of type-II photosynthetic reaction centers.

Tryptophan is the strongest UV chromophore in proteins, and its biosynthesis is the most energy-consuming among all amino acids. In the transmembrane region of purple bacterial photosynthetic reaction centers (PbRC), tryptophan residues are densely concentrated near the inactive electron-transfer branch in subunit M, forming part of the carotenoid binding site. We investigated the redox potentials (E m) of tryptophan residues in PbRC and O2-evolving photosystem II (PSII) by solving the linear Poisson-Boltzmann equation, considering equilibrium with all titratable sites in the entire protein. The tryptophan mediating superexchange electron transfer between the active (bacterio)pheophytin and primary quinone exhibits the highest E m value in both PbRC and PSII. In contrast, in PSII, D1-Trp14, oxidized under strong light to trigger the degradation of photodamaged D1 protein, has the lowest E m value. In PbRC, a chain of tryptophan residues near the inactive branch forms an E m cascade. Quantum mechanical/molecular mechanical calculations suggest that this chain enables electron hole hopping toward the carotenoid, effectively dissipating harmful UV energy. This mechanism likely reflects the photoprotective strategy of PbRC, focusing on UV tolerance rather than oxidative stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信