机械线索引导纤维环境中三维球体的形成和图案。

IF 3.8 Q2 MULTIDISCIPLINARY SCIENCES
PNAS nexus Pub Date : 2025-08-12 eCollection Date: 2025-09-01 DOI:10.1093/pnasnexus/pgaf263
Sharan Sharma, Atharva Agashe, Jennifer C Hill, Keya Ganguly, Puja Sharma, Tara D Richards, Weijian Huang, David J Kaczorowski, Pablo G Sanchez, Rakesh Kapania, Julie A Phillippi, Amrinder S Nain
{"title":"机械线索引导纤维环境中三维球体的形成和图案。","authors":"Sharan Sharma, Atharva Agashe, Jennifer C Hill, Keya Ganguly, Puja Sharma, Tara D Richards, Weijian Huang, David J Kaczorowski, Pablo G Sanchez, Rakesh Kapania, Julie A Phillippi, Amrinder S Nain","doi":"10.1093/pnasnexus/pgaf263","DOIUrl":null,"url":null,"abstract":"<p><p>Multicellular spheroids have shown great promise in 3D biology. Many techniques exist to form spheroids, but how cells take mechanical advantage of native fibrous extracellular matrix (ECM) to form spheroids remains unknown. Here, we identify the role of fiber diameter, architecture, and cell contractility on spheroids' spontaneous formation and growth in ECM-mimicking fiber networks. We show that matrix deformability revealed through force measurements on aligned fiber networks promotes spheroid formation independent of fiber diameter. At the same time, larger-diameter crosshatched networks of low deformability abrogate spheroid formation. Thus, designing fiber networks of varying diameters and architectures allows spatial patterning of spheroids and monolayers simultaneously. Forces quantified during spheroid formation revealed the contractile role of Rho-associated protein kinase in spheroid formation and maintenance. Interestingly, we observed spheroid-spheroid and multiple spheroid mergers initiated by cell exchanges to form cellular bridges connecting the two spheroids. Unexpectedly, we found large pericyte spheroids contract rhythmically. Transcriptomic analysis revealed striking changes in cell-cell, cell-matrix, and mechanosensing gene expression profiles concordant with spheroid assembly on fiber networks. Overall, we ascertained that contractility and network deformability work together to spontaneously form and pattern 3D spheroids, potentially connecting in vivo matrix biology with developmental, disease, and regenerative biology.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":"4 9","pages":"pgaf263"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448454/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanical cues guide the formation and patterning of 3D spheroids in fibrous environments.\",\"authors\":\"Sharan Sharma, Atharva Agashe, Jennifer C Hill, Keya Ganguly, Puja Sharma, Tara D Richards, Weijian Huang, David J Kaczorowski, Pablo G Sanchez, Rakesh Kapania, Julie A Phillippi, Amrinder S Nain\",\"doi\":\"10.1093/pnasnexus/pgaf263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multicellular spheroids have shown great promise in 3D biology. Many techniques exist to form spheroids, but how cells take mechanical advantage of native fibrous extracellular matrix (ECM) to form spheroids remains unknown. Here, we identify the role of fiber diameter, architecture, and cell contractility on spheroids' spontaneous formation and growth in ECM-mimicking fiber networks. We show that matrix deformability revealed through force measurements on aligned fiber networks promotes spheroid formation independent of fiber diameter. At the same time, larger-diameter crosshatched networks of low deformability abrogate spheroid formation. Thus, designing fiber networks of varying diameters and architectures allows spatial patterning of spheroids and monolayers simultaneously. Forces quantified during spheroid formation revealed the contractile role of Rho-associated protein kinase in spheroid formation and maintenance. Interestingly, we observed spheroid-spheroid and multiple spheroid mergers initiated by cell exchanges to form cellular bridges connecting the two spheroids. Unexpectedly, we found large pericyte spheroids contract rhythmically. Transcriptomic analysis revealed striking changes in cell-cell, cell-matrix, and mechanosensing gene expression profiles concordant with spheroid assembly on fiber networks. Overall, we ascertained that contractility and network deformability work together to spontaneously form and pattern 3D spheroids, potentially connecting in vivo matrix biology with developmental, disease, and regenerative biology.</p>\",\"PeriodicalId\":74468,\"journal\":{\"name\":\"PNAS nexus\",\"volume\":\"4 9\",\"pages\":\"pgaf263\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448454/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNAS nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/pnasnexus/pgaf263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgaf263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

多细胞球体在三维生物学中显示出巨大的前景。目前存在许多形成球体的技术,但细胞如何利用天然纤维细胞外基质(ECM)的机械优势形成球体尚不清楚。在这里,我们确定了纤维直径、结构和细胞收缩性在模拟ecm的纤维网络中球体的自发形成和生长中的作用。我们表明,通过对排列纤维网络的力测量揭示的矩阵变形能力促进了球体的形成,而不依赖于纤维直径。同时,更大直径的低变形能力的交叉网消除了球体的形成。因此,设计不同直径和结构的光纤网络允许球体和单层同时进行空间图案化。球体形成过程中量化的力揭示了rho相关蛋白激酶在球体形成和维持中的收缩作用。有趣的是,我们观察到由细胞交换引发的球体-球体和多个球体合并,形成连接两个球体的细胞桥。出乎意料的是,我们发现大的周细胞球体有节奏地收缩。转录组学分析显示,细胞-细胞、细胞-基质和机械传感基因表达谱的显著变化与纤维网络上的球体组装一致。总的来说,我们确定了收缩性和网络可变形性共同作用,自发形成三维球体,潜在地将体内基质生物学与发育、疾病和再生生物学联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical cues guide the formation and patterning of 3D spheroids in fibrous environments.

Multicellular spheroids have shown great promise in 3D biology. Many techniques exist to form spheroids, but how cells take mechanical advantage of native fibrous extracellular matrix (ECM) to form spheroids remains unknown. Here, we identify the role of fiber diameter, architecture, and cell contractility on spheroids' spontaneous formation and growth in ECM-mimicking fiber networks. We show that matrix deformability revealed through force measurements on aligned fiber networks promotes spheroid formation independent of fiber diameter. At the same time, larger-diameter crosshatched networks of low deformability abrogate spheroid formation. Thus, designing fiber networks of varying diameters and architectures allows spatial patterning of spheroids and monolayers simultaneously. Forces quantified during spheroid formation revealed the contractile role of Rho-associated protein kinase in spheroid formation and maintenance. Interestingly, we observed spheroid-spheroid and multiple spheroid mergers initiated by cell exchanges to form cellular bridges connecting the two spheroids. Unexpectedly, we found large pericyte spheroids contract rhythmically. Transcriptomic analysis revealed striking changes in cell-cell, cell-matrix, and mechanosensing gene expression profiles concordant with spheroid assembly on fiber networks. Overall, we ascertained that contractility and network deformability work together to spontaneously form and pattern 3D spheroids, potentially connecting in vivo matrix biology with developmental, disease, and regenerative biology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信