Zhigang Zheng, Lin Yan, Tao Li, Jiajing Liu, Lei Wang, Yu Qian
{"title":"可兴奋神经元网络的竞争振荡动力学。","authors":"Zhigang Zheng, Lin Yan, Tao Li, Jiajing Liu, Lei Wang, Yu Qian","doi":"10.3389/fnetp.2025.1613288","DOIUrl":null,"url":null,"abstract":"<p><p>Collective dynamics of networks of excitable neurons can be considered as the emergence of ordering from microscopic self-organization at the macroscopic scale. Sustained oscillation can emerge on networks of neurons even if a single neuron is dynamical excitable and non-oscillatory. Fundamental ingredients of networks such as loops, trees, and hubs, play distinct roles in supporting, propagating and impeding sustained oscillations. In this paper, we explore the mechanism of collective self-sustained oscillations on neuron networks by analyzing the functions of different topologies in shaping the oscillatory patterns on excitable neuron networks. The Winfree loops are revealed to be responsible for generating collective oscillations as the oscillation core, and other neurons act as the propagating paths. The existence of large numbers of loops in a network indicates potential competitions of the formation of collective oscillatory dynamics. The roles of loop-loop competition in homogeneous networks and loop-hub competition in heterogeneous networks are extensively discussed.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"5 ","pages":"1613288"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12446225/pdf/","citationCount":"0","resultStr":"{\"title\":\"Competitive oscillatory dynamics in excitable neuron networks.\",\"authors\":\"Zhigang Zheng, Lin Yan, Tao Li, Jiajing Liu, Lei Wang, Yu Qian\",\"doi\":\"10.3389/fnetp.2025.1613288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Collective dynamics of networks of excitable neurons can be considered as the emergence of ordering from microscopic self-organization at the macroscopic scale. Sustained oscillation can emerge on networks of neurons even if a single neuron is dynamical excitable and non-oscillatory. Fundamental ingredients of networks such as loops, trees, and hubs, play distinct roles in supporting, propagating and impeding sustained oscillations. In this paper, we explore the mechanism of collective self-sustained oscillations on neuron networks by analyzing the functions of different topologies in shaping the oscillatory patterns on excitable neuron networks. The Winfree loops are revealed to be responsible for generating collective oscillations as the oscillation core, and other neurons act as the propagating paths. The existence of large numbers of loops in a network indicates potential competitions of the formation of collective oscillatory dynamics. The roles of loop-loop competition in homogeneous networks and loop-hub competition in heterogeneous networks are extensively discussed.</p>\",\"PeriodicalId\":73092,\"journal\":{\"name\":\"Frontiers in network physiology\",\"volume\":\"5 \",\"pages\":\"1613288\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12446225/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in network physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnetp.2025.1613288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in network physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnetp.2025.1613288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Competitive oscillatory dynamics in excitable neuron networks.
Collective dynamics of networks of excitable neurons can be considered as the emergence of ordering from microscopic self-organization at the macroscopic scale. Sustained oscillation can emerge on networks of neurons even if a single neuron is dynamical excitable and non-oscillatory. Fundamental ingredients of networks such as loops, trees, and hubs, play distinct roles in supporting, propagating and impeding sustained oscillations. In this paper, we explore the mechanism of collective self-sustained oscillations on neuron networks by analyzing the functions of different topologies in shaping the oscillatory patterns on excitable neuron networks. The Winfree loops are revealed to be responsible for generating collective oscillations as the oscillation core, and other neurons act as the propagating paths. The existence of large numbers of loops in a network indicates potential competitions of the formation of collective oscillatory dynamics. The roles of loop-loop competition in homogeneous networks and loop-hub competition in heterogeneous networks are extensively discussed.