Simona Elena Pisculungeanu, Liliana Cristina Soare, Oana Alexandra Luțu, Alina Păunescu, Georgiana Cîrstea, Aurelian Denis Negrea, Codruța Mihaela Dobrescu, Nicoleta Anca Ionescu Șuțan
{"title":"利用小麦和葱的生物测定法综合评价纳米银对植物生长和细胞毒性的影响。","authors":"Simona Elena Pisculungeanu, Liliana Cristina Soare, Oana Alexandra Luțu, Alina Păunescu, Georgiana Cîrstea, Aurelian Denis Negrea, Codruța Mihaela Dobrescu, Nicoleta Anca Ionescu Șuțan","doi":"10.3390/jox15050147","DOIUrl":null,"url":null,"abstract":"<p><p>The production and extensive use of silver nanoparticles (AgNPs) in various fields necessitate thorough testing, not only in terms of their potential applications but also regarding the effects they induce on various organisms. In addition, nanoparticles generated from various anthropogenic activities, which reach or are formed in the atmosphere, have a significant impact on the health of humans and other living organisms. Recent research indicates that the effects produced by these nanoparticles are dependent on their size and applied dose. In this context, the present study aimed to evaluate the physiological, biochemical and cytogenotoxic effects induced by different doses of AgNPs compared to positive and negative controls in <i>Triticum aestivum</i> L. and <i>Allium cepa</i> L. A significant stimulatory effect of the treatment performed with the solution of AgNPs with a size of 20 nm, at the lowest concentration (0.02 µg mL<sup>-1</sup>), in the two tested species, was obtained. The growth and weight of the seedling were significantly increased, and the mitotic index was also elevated. Additionally, this treatment variant showed the lowest percentage of chromosomal aberrations. No significant differences were observed in cell viability, total polyphenol content, proline levels, or assimilatory pigment concentrations compared to the control. Our findings show that AgNPs may exert stimulatory effects, whether significant or not, on certain physiological and biochemical parameters. However, they also interfere with cell cycle regulation and genomic stability, raising concerns regarding their environmental and biological safety. The <i>Allium</i> test proved to be an effective method for detecting nanoparticle-induced genotoxicity and can be recommended as a preliminary screening assay in nanoparticle safety evaluations.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452658/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrated Assessment of Silver Nanoparticles on Plant Growth and Cytogenotoxicity Using <i>Triticum</i> and <i>Allium</i> Bioassays.\",\"authors\":\"Simona Elena Pisculungeanu, Liliana Cristina Soare, Oana Alexandra Luțu, Alina Păunescu, Georgiana Cîrstea, Aurelian Denis Negrea, Codruța Mihaela Dobrescu, Nicoleta Anca Ionescu Șuțan\",\"doi\":\"10.3390/jox15050147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The production and extensive use of silver nanoparticles (AgNPs) in various fields necessitate thorough testing, not only in terms of their potential applications but also regarding the effects they induce on various organisms. In addition, nanoparticles generated from various anthropogenic activities, which reach or are formed in the atmosphere, have a significant impact on the health of humans and other living organisms. Recent research indicates that the effects produced by these nanoparticles are dependent on their size and applied dose. In this context, the present study aimed to evaluate the physiological, biochemical and cytogenotoxic effects induced by different doses of AgNPs compared to positive and negative controls in <i>Triticum aestivum</i> L. and <i>Allium cepa</i> L. A significant stimulatory effect of the treatment performed with the solution of AgNPs with a size of 20 nm, at the lowest concentration (0.02 µg mL<sup>-1</sup>), in the two tested species, was obtained. The growth and weight of the seedling were significantly increased, and the mitotic index was also elevated. Additionally, this treatment variant showed the lowest percentage of chromosomal aberrations. No significant differences were observed in cell viability, total polyphenol content, proline levels, or assimilatory pigment concentrations compared to the control. Our findings show that AgNPs may exert stimulatory effects, whether significant or not, on certain physiological and biochemical parameters. However, they also interfere with cell cycle regulation and genomic stability, raising concerns regarding their environmental and biological safety. The <i>Allium</i> test proved to be an effective method for detecting nanoparticle-induced genotoxicity and can be recommended as a preliminary screening assay in nanoparticle safety evaluations.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452658/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox15050147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15050147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Integrated Assessment of Silver Nanoparticles on Plant Growth and Cytogenotoxicity Using Triticum and Allium Bioassays.
The production and extensive use of silver nanoparticles (AgNPs) in various fields necessitate thorough testing, not only in terms of their potential applications but also regarding the effects they induce on various organisms. In addition, nanoparticles generated from various anthropogenic activities, which reach or are formed in the atmosphere, have a significant impact on the health of humans and other living organisms. Recent research indicates that the effects produced by these nanoparticles are dependent on their size and applied dose. In this context, the present study aimed to evaluate the physiological, biochemical and cytogenotoxic effects induced by different doses of AgNPs compared to positive and negative controls in Triticum aestivum L. and Allium cepa L. A significant stimulatory effect of the treatment performed with the solution of AgNPs with a size of 20 nm, at the lowest concentration (0.02 µg mL-1), in the two tested species, was obtained. The growth and weight of the seedling were significantly increased, and the mitotic index was also elevated. Additionally, this treatment variant showed the lowest percentage of chromosomal aberrations. No significant differences were observed in cell viability, total polyphenol content, proline levels, or assimilatory pigment concentrations compared to the control. Our findings show that AgNPs may exert stimulatory effects, whether significant or not, on certain physiological and biochemical parameters. However, they also interfere with cell cycle regulation and genomic stability, raising concerns regarding their environmental and biological safety. The Allium test proved to be an effective method for detecting nanoparticle-induced genotoxicity and can be recommended as a preliminary screening assay in nanoparticle safety evaluations.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.