评价内分泌干扰素和VirtualToxLab预测全氟烷基和多氟烷基物质与核受体的结合。

IF 4.4 Q1 TOXICOLOGY
Nina Franko, Manca Vetrih, Marija Sollner Dolenc
{"title":"评价内分泌干扰素和VirtualToxLab预测全氟烷基和多氟烷基物质与核受体的结合。","authors":"Nina Franko, Manca Vetrih, Marija Sollner Dolenc","doi":"10.3390/jox15050136","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated whether the Endocrine Disruptome and VirtualToxLab in silico platforms are suitable for predicting the endocrine disrupting effects of per- and polyfluoroalkyl substances (PFASs)-in particular, for interactions with oestrogen receptors (ERs) and androgen receptor (AR). Compounds included in the U.S. Environmental Protection Agency's PFAS working list were analysed with both models, and the results were compared with the available in vitro data regarding their modulation of nuclear receptors. Based on the identified prediction parameters, such as sensitivity, specificity, accuracy, and Mathews' correlation coefficient, VirtualToxLab was found to be a reliable model for predicting the reactivity of PFASs with AR, while a positive consensus approach of both platforms provided reliable predictions of the PFAS reactivity with ERα and ERβ. This study provides the evidence that Endocrine Disruptome and VirtualToxLab can be used as a tier 1 screening tool for assessment of the endocrine disrupting effect of PFASs. Furthermore, it demonstrates that the likelihood of endocrine disrupting properties increases with the lipophilicity of PFASs and identifies the understudied PFHpS, PFNS, PFDS, 9-Cl, NMeFOSAA, NEtFOSAA, 4:2 FTS, 6:2 FTS, 8:2 FTS, 6:2 monoPAP, 8:2 monoPAP, and 5:3 acid as potential ligands of AR and/or ERs.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452740/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Endocrine Disruptome and VirtualToxLab for Predicting Per- and Polyfluoroalkyl Substances Binding to Nuclear Receptors.\",\"authors\":\"Nina Franko, Manca Vetrih, Marija Sollner Dolenc\",\"doi\":\"10.3390/jox15050136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated whether the Endocrine Disruptome and VirtualToxLab in silico platforms are suitable for predicting the endocrine disrupting effects of per- and polyfluoroalkyl substances (PFASs)-in particular, for interactions with oestrogen receptors (ERs) and androgen receptor (AR). Compounds included in the U.S. Environmental Protection Agency's PFAS working list were analysed with both models, and the results were compared with the available in vitro data regarding their modulation of nuclear receptors. Based on the identified prediction parameters, such as sensitivity, specificity, accuracy, and Mathews' correlation coefficient, VirtualToxLab was found to be a reliable model for predicting the reactivity of PFASs with AR, while a positive consensus approach of both platforms provided reliable predictions of the PFAS reactivity with ERα and ERβ. This study provides the evidence that Endocrine Disruptome and VirtualToxLab can be used as a tier 1 screening tool for assessment of the endocrine disrupting effect of PFASs. Furthermore, it demonstrates that the likelihood of endocrine disrupting properties increases with the lipophilicity of PFASs and identifies the understudied PFHpS, PFNS, PFDS, 9-Cl, NMeFOSAA, NEtFOSAA, 4:2 FTS, 6:2 FTS, 8:2 FTS, 6:2 monoPAP, 8:2 monoPAP, and 5:3 acid as potential ligands of AR and/or ERs.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452740/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox15050136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15050136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了硅平台上的内分泌干扰组和VirtualToxLab是否适用于预测全氟烷基和多氟烷基物质(PFASs)的内分泌干扰效应,特别是与雌激素受体(er)和雄激素受体(AR)的相互作用。用两种模型分析了美国环境保护署PFAS工作清单中的化合物,并将结果与可用的体外核受体调节数据进行了比较。基于确定的预测参数,如敏感性、特异性、准确性和Mathews相关系数,VirtualToxLab被发现是预测PFAS与AR反应性的可靠模型,而两个平台的积极共识方法提供了PFAS与ERα和ERβ反应性的可靠预测。本研究提供的证据表明,Endocrine Disruptome和VirtualToxLab可以作为评估PFASs内分泌干扰作用的一级筛选工具。此外,研究表明,随着PFASs的亲脂性增加,内分泌干扰特性的可能性增加,并确定了未被研究的PFHpS、PFNS、PFDS、9-Cl、NMeFOSAA、NEtFOSAA、4:2 FTS、6:2 FTS、8:2 FTS、6:2 monoPAP、8:2 monoPAP和5:3酸作为AR和/或er的潜在配体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evaluation of Endocrine Disruptome and VirtualToxLab for Predicting Per- and Polyfluoroalkyl Substances Binding to Nuclear Receptors.

Evaluation of Endocrine Disruptome and VirtualToxLab for Predicting Per- and Polyfluoroalkyl Substances Binding to Nuclear Receptors.

This study investigated whether the Endocrine Disruptome and VirtualToxLab in silico platforms are suitable for predicting the endocrine disrupting effects of per- and polyfluoroalkyl substances (PFASs)-in particular, for interactions with oestrogen receptors (ERs) and androgen receptor (AR). Compounds included in the U.S. Environmental Protection Agency's PFAS working list were analysed with both models, and the results were compared with the available in vitro data regarding their modulation of nuclear receptors. Based on the identified prediction parameters, such as sensitivity, specificity, accuracy, and Mathews' correlation coefficient, VirtualToxLab was found to be a reliable model for predicting the reactivity of PFASs with AR, while a positive consensus approach of both platforms provided reliable predictions of the PFAS reactivity with ERα and ERβ. This study provides the evidence that Endocrine Disruptome and VirtualToxLab can be used as a tier 1 screening tool for assessment of the endocrine disrupting effect of PFASs. Furthermore, it demonstrates that the likelihood of endocrine disrupting properties increases with the lipophilicity of PFASs and identifies the understudied PFHpS, PFNS, PFDS, 9-Cl, NMeFOSAA, NEtFOSAA, 4:2 FTS, 6:2 FTS, 8:2 FTS, 6:2 monoPAP, 8:2 monoPAP, and 5:3 acid as potential ligands of AR and/or ERs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
1.70%
发文量
21
审稿时长
10 weeks
期刊介绍: The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信