利用大麻籽粕增强细菌纤维素生产:最佳条件和性能。

IF 3.1 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
BioTech Pub Date : 2025-08-27 DOI:10.3390/biotech14030066
Sawichaya Orpool, Suthaphat Kamthai, Thanyaporn Siriwoharn, Patompong Khaw-On, Aree Deenu, Srisuwan Naruenartwongsakul
{"title":"利用大麻籽粕增强细菌纤维素生产:最佳条件和性能。","authors":"Sawichaya Orpool, Suthaphat Kamthai, Thanyaporn Siriwoharn, Patompong Khaw-On, Aree Deenu, Srisuwan Naruenartwongsakul","doi":"10.3390/biotech14030066","DOIUrl":null,"url":null,"abstract":"<p><p>Hemp (<i>Cannabis sativa</i> L.) seed is progressively emerging as an innovative and sustainable source of plant oil. Defatted hempseed meal is rich in protein and carbohydrates, which bacteria can convert into cellulose using glucose and fructose. The optimal conditions for bacterial cellulose (BC) production from hempseed meal were evaluated by investigating total solid concentrations ranging from 8 to 16 °Brix using <i>Komagataeibacter nataicola</i> under controlled conditions. The changes in pH, bioactive compounds, organic acids, and carbon source concentrations were monitored during the fermentation process. The highest yield of BC, 12.41 g/L, was obtained at 10 °Brix after 14 days of fermentation. It was found that the production of BC was negatively impacted by a decrease in pH and an increase in organic acids. BC exhibited a ribbon-like 3D network structure and a crystallinity index of about 70%, with excellent water-holding capacity, low oil-holding capacity, high emulsifying activity, and high emulsion stability (11.21%, 2.71%, 34.33%, and 39.11%, respectively). This BC possesses exceptional mechanical properties, a high degree of crystallinity, and superior water-holding capacity, making it valuable in various industries such as food, pharmaceuticals, and biotechnology.</p>","PeriodicalId":34490,"journal":{"name":"BioTech","volume":"14 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452348/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced Bacterial Cellulose Production Using Hempseed Meal: Optimal Conditions and Properties.\",\"authors\":\"Sawichaya Orpool, Suthaphat Kamthai, Thanyaporn Siriwoharn, Patompong Khaw-On, Aree Deenu, Srisuwan Naruenartwongsakul\",\"doi\":\"10.3390/biotech14030066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hemp (<i>Cannabis sativa</i> L.) seed is progressively emerging as an innovative and sustainable source of plant oil. Defatted hempseed meal is rich in protein and carbohydrates, which bacteria can convert into cellulose using glucose and fructose. The optimal conditions for bacterial cellulose (BC) production from hempseed meal were evaluated by investigating total solid concentrations ranging from 8 to 16 °Brix using <i>Komagataeibacter nataicola</i> under controlled conditions. The changes in pH, bioactive compounds, organic acids, and carbon source concentrations were monitored during the fermentation process. The highest yield of BC, 12.41 g/L, was obtained at 10 °Brix after 14 days of fermentation. It was found that the production of BC was negatively impacted by a decrease in pH and an increase in organic acids. BC exhibited a ribbon-like 3D network structure and a crystallinity index of about 70%, with excellent water-holding capacity, low oil-holding capacity, high emulsifying activity, and high emulsion stability (11.21%, 2.71%, 34.33%, and 39.11%, respectively). This BC possesses exceptional mechanical properties, a high degree of crystallinity, and superior water-holding capacity, making it valuable in various industries such as food, pharmaceuticals, and biotechnology.</p>\",\"PeriodicalId\":34490,\"journal\":{\"name\":\"BioTech\",\"volume\":\"14 3\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452348/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioTech\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biotech14030066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biotech14030066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大麻(大麻sativa L.)种子逐渐成为一种创新和可持续的植物油来源。脱脂大麻籽粉富含蛋白质和碳水化合物,细菌可以利用葡萄糖和果糖将其转化为纤维素。在8 ~ 16°白度范围内,以Komagataeibacter nataicola为研究对象,在控制条件下对大麻籽粕细菌纤维素(BC)生产的最佳条件进行了研究。在发酵过程中监测了pH、生物活性化合物、有机酸和碳源浓度的变化。发酵14天后,在10°白度条件下BC的产量最高,为12.41 g/L。研究发现,pH值的降低和有机酸含量的增加对BC的产生有负面影响。BC呈带状三维网状结构,结晶度约为70%,具有优异的持水能力、低持油能力、高乳化活性和高乳液稳定性(分别为11.21%、2.71%、34.33%和39.11%)。这种BC具有优异的机械性能,高度结晶度和优越的保水能力,使其在食品,制药和生物技术等各个行业中具有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Bacterial Cellulose Production Using Hempseed Meal: Optimal Conditions and Properties.

Hemp (Cannabis sativa L.) seed is progressively emerging as an innovative and sustainable source of plant oil. Defatted hempseed meal is rich in protein and carbohydrates, which bacteria can convert into cellulose using glucose and fructose. The optimal conditions for bacterial cellulose (BC) production from hempseed meal were evaluated by investigating total solid concentrations ranging from 8 to 16 °Brix using Komagataeibacter nataicola under controlled conditions. The changes in pH, bioactive compounds, organic acids, and carbon source concentrations were monitored during the fermentation process. The highest yield of BC, 12.41 g/L, was obtained at 10 °Brix after 14 days of fermentation. It was found that the production of BC was negatively impacted by a decrease in pH and an increase in organic acids. BC exhibited a ribbon-like 3D network structure and a crystallinity index of about 70%, with excellent water-holding capacity, low oil-holding capacity, high emulsifying activity, and high emulsion stability (11.21%, 2.71%, 34.33%, and 39.11%, respectively). This BC possesses exceptional mechanical properties, a high degree of crystallinity, and superior water-holding capacity, making it valuable in various industries such as food, pharmaceuticals, and biotechnology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioTech
BioTech Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
3.70
自引率
0.00%
发文量
51
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信