{"title":"功能性抗红外偶联生物金纳米颗粒的细胞递送。","authors":"Parastoo Pourali, Veronika Benson","doi":"10.3390/ncrna11050066","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Bio-produced gold nanoparticles (AuNPs) are effective carriers of short RNAs into specialized mammalian cells. Their potential application is still limited by scarce knowledge on their uptake and intracellular fate. Gold nanoparticles that are not biologically produced (NB-AuNPs) enter specialized cells primarily via clathrin-dependent endocytosis. Unlike the NB-AuNPs, the bio AuNPs possess natural surface coatings that significantly alter the AuNPs properties. Our research aimed to reveal the cellular uptake of the AuNPs with respect to delivering a functional RNA cargo. <b>Methods</b>: The AuNPs were conjugated with short inhibitory RNA specific to miR 135b. Mammary cancer cells 4T1 were pretreated with inhibitors of caveolin- and clathrin-mediated endocytosis and macropinocytosis. AuNPs' uptake, fate, and miR 135b knock-down were assessed with TEM and qPCR. <b>Results</b>: The AuNPs-antimiR 135b conjugates entered 4T1 cells via all the tested pathways and could be seen inside the cells in early and late endosomes as well as cytoplasm. In contrast to the clathrin-dependent pathway, the caveolae-mediated endocytosis and the macropinocytosis of the AuNPs resulted in the effective targeting and reduction of the miR 135b. <b>Conclusions</b>: The bio-produced AuNPs can effectively enter mammalian cells simultaneously by different endocytic pathways but the delivery of functional cargo is not achieved via the clathrin-dependent endocytosis.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452297/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cellular Delivery of Functional AntimiR Conjugated to Bio-Produced Gold Nanoparticles.\",\"authors\":\"Parastoo Pourali, Veronika Benson\",\"doi\":\"10.3390/ncrna11050066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives</b>: Bio-produced gold nanoparticles (AuNPs) are effective carriers of short RNAs into specialized mammalian cells. Their potential application is still limited by scarce knowledge on their uptake and intracellular fate. Gold nanoparticles that are not biologically produced (NB-AuNPs) enter specialized cells primarily via clathrin-dependent endocytosis. Unlike the NB-AuNPs, the bio AuNPs possess natural surface coatings that significantly alter the AuNPs properties. Our research aimed to reveal the cellular uptake of the AuNPs with respect to delivering a functional RNA cargo. <b>Methods</b>: The AuNPs were conjugated with short inhibitory RNA specific to miR 135b. Mammary cancer cells 4T1 were pretreated with inhibitors of caveolin- and clathrin-mediated endocytosis and macropinocytosis. AuNPs' uptake, fate, and miR 135b knock-down were assessed with TEM and qPCR. <b>Results</b>: The AuNPs-antimiR 135b conjugates entered 4T1 cells via all the tested pathways and could be seen inside the cells in early and late endosomes as well as cytoplasm. In contrast to the clathrin-dependent pathway, the caveolae-mediated endocytosis and the macropinocytosis of the AuNPs resulted in the effective targeting and reduction of the miR 135b. <b>Conclusions</b>: The bio-produced AuNPs can effectively enter mammalian cells simultaneously by different endocytic pathways but the delivery of functional cargo is not achieved via the clathrin-dependent endocytosis.</p>\",\"PeriodicalId\":19271,\"journal\":{\"name\":\"Non-Coding RNA\",\"volume\":\"11 5\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452297/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Non-Coding RNA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ncrna11050066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna11050066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cellular Delivery of Functional AntimiR Conjugated to Bio-Produced Gold Nanoparticles.
Background/Objectives: Bio-produced gold nanoparticles (AuNPs) are effective carriers of short RNAs into specialized mammalian cells. Their potential application is still limited by scarce knowledge on their uptake and intracellular fate. Gold nanoparticles that are not biologically produced (NB-AuNPs) enter specialized cells primarily via clathrin-dependent endocytosis. Unlike the NB-AuNPs, the bio AuNPs possess natural surface coatings that significantly alter the AuNPs properties. Our research aimed to reveal the cellular uptake of the AuNPs with respect to delivering a functional RNA cargo. Methods: The AuNPs were conjugated with short inhibitory RNA specific to miR 135b. Mammary cancer cells 4T1 were pretreated with inhibitors of caveolin- and clathrin-mediated endocytosis and macropinocytosis. AuNPs' uptake, fate, and miR 135b knock-down were assessed with TEM and qPCR. Results: The AuNPs-antimiR 135b conjugates entered 4T1 cells via all the tested pathways and could be seen inside the cells in early and late endosomes as well as cytoplasm. In contrast to the clathrin-dependent pathway, the caveolae-mediated endocytosis and the macropinocytosis of the AuNPs resulted in the effective targeting and reduction of the miR 135b. Conclusions: The bio-produced AuNPs can effectively enter mammalian cells simultaneously by different endocytic pathways but the delivery of functional cargo is not achieved via the clathrin-dependent endocytosis.
Non-Coding RNABiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍:
Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.