暖温条件下苹果DELLA在烟叶中通过cop1依赖机制降解

IF 2.3 3区 生物学 Q2 PLANT SCIENCES
Plant Direct Pub Date : 2025-09-19 eCollection Date: 2025-09-01 DOI:10.1002/pld3.70108
Mohamad Al Bolbol, Cecilia Costigliolo-Rojas, Evelyne Costes, David Alabadί, Fernando Andrés
{"title":"暖温条件下苹果DELLA在烟叶中通过cop1依赖机制降解","authors":"Mohamad Al Bolbol, Cecilia Costigliolo-Rojas, Evelyne Costes, David Alabadί, Fernando Andrés","doi":"10.1002/pld3.70108","DOIUrl":null,"url":null,"abstract":"<p><p>In apple (<i>Malus domestica</i>), flowering is repressed by the phytohormone gibberellin (GA) and high temperatures (> 27°C), but the molecular mechanisms underlying this repression remain unknown. In <i>Arabidopsis thaliana</i> (Arabidopsis), GA and temperature signaling converge on DELLA protein regulation, with both factors promoting DELLA degradation through independent 26S proteasome-mediated pathways. Here, we tested whether high-temperature-induced DELLA degradation is conserved in apple. Using the heterologous systems Arabidopsis and <i>Nicotiana benthamiana</i>, we characterized the function of the apple DELLA protein DELLA REPRESSOR OF ga1-3 (MdRGL1a) and found that high temperatures promote its degradation via a 26S proteasome-dependent mechanism. Additionally, MdRGL1a interacts with apple orthologs of Arabidopsis CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) and SUPPRESSOR OF phyA-105 2 (SPA2), components of an E3 ubiquitin ligase complex that mediates protein ubiquitination and degradation. These findings suggest a conserved mechanism of temperature-induced DELLA degradation between apple and Arabidopsis. The degradation of MdRGL1a may underlie flowering suppression in apple under high temperatures, providing molecular insights that could aid in developing strategies to stabilize apple and other crop production in the face of climate change.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"9 9","pages":"e70108"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12447003/pdf/","citationCount":"0","resultStr":"{\"title\":\"Apple DELLA Is Degraded Under Warm Temperature Conditions in <i>Nicotiana benthamiana</i> Leaves Through a COP1-Dependent Mechanism.\",\"authors\":\"Mohamad Al Bolbol, Cecilia Costigliolo-Rojas, Evelyne Costes, David Alabadί, Fernando Andrés\",\"doi\":\"10.1002/pld3.70108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In apple (<i>Malus domestica</i>), flowering is repressed by the phytohormone gibberellin (GA) and high temperatures (> 27°C), but the molecular mechanisms underlying this repression remain unknown. In <i>Arabidopsis thaliana</i> (Arabidopsis), GA and temperature signaling converge on DELLA protein regulation, with both factors promoting DELLA degradation through independent 26S proteasome-mediated pathways. Here, we tested whether high-temperature-induced DELLA degradation is conserved in apple. Using the heterologous systems Arabidopsis and <i>Nicotiana benthamiana</i>, we characterized the function of the apple DELLA protein DELLA REPRESSOR OF ga1-3 (MdRGL1a) and found that high temperatures promote its degradation via a 26S proteasome-dependent mechanism. Additionally, MdRGL1a interacts with apple orthologs of Arabidopsis CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) and SUPPRESSOR OF phyA-105 2 (SPA2), components of an E3 ubiquitin ligase complex that mediates protein ubiquitination and degradation. These findings suggest a conserved mechanism of temperature-induced DELLA degradation between apple and Arabidopsis. The degradation of MdRGL1a may underlie flowering suppression in apple under high temperatures, providing molecular insights that could aid in developing strategies to stabilize apple and other crop production in the face of climate change.</p>\",\"PeriodicalId\":20230,\"journal\":{\"name\":\"Plant Direct\",\"volume\":\"9 9\",\"pages\":\"e70108\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12447003/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pld3.70108\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.70108","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在苹果(Malus domestica)中,开花受到植物激素赤霉素(GA)和高温(bbb27°C)的抑制,但这种抑制的分子机制尚不清楚。在拟南芥(Arabidopsis thaliana,简称Arabidopsis)中,GA和温度信号汇聚于DELLA蛋白调控上,这两个因素通过独立的26S蛋白酶体介导途径促进DELLA降解。在这里,我们测试了高温诱导的DELLA降解在苹果中是否守恒。利用拟南芥和拟南芥的异种系统,研究了苹果DELLA蛋白DELLA REPRESSOR of ga1-3 (MdRGL1a)的功能,发现高温通过26S蛋白酶体依赖机制促进其降解。此外,MdRGL1a与拟南芥的苹果同源基因COP1和SPA2相互作用,后者是介导蛋白质泛素化和降解的E3泛素连接酶复合物的组分。这些发现提示了苹果和拟南芥之间温度诱导DELLA降解的保守机制。MdRGL1a的降解可能是高温下苹果开花抑制的基础,为在气候变化下稳定苹果和其他作物生产提供了分子见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Apple DELLA Is Degraded Under Warm Temperature Conditions in Nicotiana benthamiana Leaves Through a COP1-Dependent Mechanism.

In apple (Malus domestica), flowering is repressed by the phytohormone gibberellin (GA) and high temperatures (> 27°C), but the molecular mechanisms underlying this repression remain unknown. In Arabidopsis thaliana (Arabidopsis), GA and temperature signaling converge on DELLA protein regulation, with both factors promoting DELLA degradation through independent 26S proteasome-mediated pathways. Here, we tested whether high-temperature-induced DELLA degradation is conserved in apple. Using the heterologous systems Arabidopsis and Nicotiana benthamiana, we characterized the function of the apple DELLA protein DELLA REPRESSOR OF ga1-3 (MdRGL1a) and found that high temperatures promote its degradation via a 26S proteasome-dependent mechanism. Additionally, MdRGL1a interacts with apple orthologs of Arabidopsis CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) and SUPPRESSOR OF phyA-105 2 (SPA2), components of an E3 ubiquitin ligase complex that mediates protein ubiquitination and degradation. These findings suggest a conserved mechanism of temperature-induced DELLA degradation between apple and Arabidopsis. The degradation of MdRGL1a may underlie flowering suppression in apple under high temperatures, providing molecular insights that could aid in developing strategies to stabilize apple and other crop production in the face of climate change.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Direct
Plant Direct Environmental Science-Ecology
CiteScore
5.00
自引率
3.30%
发文量
101
审稿时长
14 weeks
期刊介绍: Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信