Sui Li , Xingguang Deng , Qiwei Li , Zhiming Zhen , Luyi Han , Kang Chen , Chaoyang Zhou , Fengxi Chen , Peiyu Huang , Ruiting Zhang , Hao Chen , Tianyu Zhang , Wei Chen , Tao Tan , Chen Liu
{"title":"用生成扩散网络合成3T到7T的SWI,用于深髓静脉可视化。","authors":"Sui Li , Xingguang Deng , Qiwei Li , Zhiming Zhen , Luyi Han , Kang Chen , Chaoyang Zhou , Fengxi Chen , Peiyu Huang , Ruiting Zhang , Hao Chen , Tianyu Zhang , Wei Chen , Tao Tan , Chen Liu","doi":"10.1016/j.neuroimage.2025.121475","DOIUrl":null,"url":null,"abstract":"<div><div>Ultrahigh-field susceptibility-weighted imaging (SWI) provides excellent tissue contrast and anatomical details of brain. However, ultrahigh-field magnetic resonance (MR) scanner often expensive and provides uncomfortable noise experience for patient. Therefore, some deep learning approaches have been proposed to synthesis high-field MR images from low-filed MR images, most existing methods rely on generative adversarial network (GAN) and achieve acceptable results. While the dilemma in train process of GAN, generally recognized, limits the synthesis performance in SWI images for its microvascular structure. Diffusion models, as a promising alternative, indirectly characterize the gaussian noise to the target image with a slow sampling through a considerable number of steps. To address this limitation, we presented a generative diffusion-based deep learning imaging model, named conditional denoising diffusion probabilistic model (CDDPM), for synthesizing high-field (7 Tesla) SWI images form low-field (3 Tesla) SWI images and assess clinical applicability. Crucially, the experiment results demonstrate that the diffusion-based model that synthesizes 7T SWI from 3T SWI images is potentially to providing an alternative way to achieve the advantages of ultra-high field 7T MR images for deep medullary veins visualization.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"320 ","pages":"Article 121475"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetizing SWI from 3T to 7T by generative diffusion network for deep medullary veins visualization\",\"authors\":\"Sui Li , Xingguang Deng , Qiwei Li , Zhiming Zhen , Luyi Han , Kang Chen , Chaoyang Zhou , Fengxi Chen , Peiyu Huang , Ruiting Zhang , Hao Chen , Tianyu Zhang , Wei Chen , Tao Tan , Chen Liu\",\"doi\":\"10.1016/j.neuroimage.2025.121475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ultrahigh-field susceptibility-weighted imaging (SWI) provides excellent tissue contrast and anatomical details of brain. However, ultrahigh-field magnetic resonance (MR) scanner often expensive and provides uncomfortable noise experience for patient. Therefore, some deep learning approaches have been proposed to synthesis high-field MR images from low-filed MR images, most existing methods rely on generative adversarial network (GAN) and achieve acceptable results. While the dilemma in train process of GAN, generally recognized, limits the synthesis performance in SWI images for its microvascular structure. Diffusion models, as a promising alternative, indirectly characterize the gaussian noise to the target image with a slow sampling through a considerable number of steps. To address this limitation, we presented a generative diffusion-based deep learning imaging model, named conditional denoising diffusion probabilistic model (CDDPM), for synthesizing high-field (7 Tesla) SWI images form low-field (3 Tesla) SWI images and assess clinical applicability. Crucially, the experiment results demonstrate that the diffusion-based model that synthesizes 7T SWI from 3T SWI images is potentially to providing an alternative way to achieve the advantages of ultra-high field 7T MR images for deep medullary veins visualization.</div></div>\",\"PeriodicalId\":19299,\"journal\":{\"name\":\"NeuroImage\",\"volume\":\"320 \",\"pages\":\"Article 121475\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroImage\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1053811925004781\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925004781","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Synthetizing SWI from 3T to 7T by generative diffusion network for deep medullary veins visualization
Ultrahigh-field susceptibility-weighted imaging (SWI) provides excellent tissue contrast and anatomical details of brain. However, ultrahigh-field magnetic resonance (MR) scanner often expensive and provides uncomfortable noise experience for patient. Therefore, some deep learning approaches have been proposed to synthesis high-field MR images from low-filed MR images, most existing methods rely on generative adversarial network (GAN) and achieve acceptable results. While the dilemma in train process of GAN, generally recognized, limits the synthesis performance in SWI images for its microvascular structure. Diffusion models, as a promising alternative, indirectly characterize the gaussian noise to the target image with a slow sampling through a considerable number of steps. To address this limitation, we presented a generative diffusion-based deep learning imaging model, named conditional denoising diffusion probabilistic model (CDDPM), for synthesizing high-field (7 Tesla) SWI images form low-field (3 Tesla) SWI images and assess clinical applicability. Crucially, the experiment results demonstrate that the diffusion-based model that synthesizes 7T SWI from 3T SWI images is potentially to providing an alternative way to achieve the advantages of ultra-high field 7T MR images for deep medullary veins visualization.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.