用生成扩散网络合成3T到7T的SWI,用于深髓静脉可视化。

IF 4.5 2区 医学 Q1 NEUROIMAGING
Sui Li , Xingguang Deng , Qiwei Li , Zhiming Zhen , Luyi Han , Kang Chen , Chaoyang Zhou , Fengxi Chen , Peiyu Huang , Ruiting Zhang , Hao Chen , Tianyu Zhang , Wei Chen , Tao Tan , Chen Liu
{"title":"用生成扩散网络合成3T到7T的SWI,用于深髓静脉可视化。","authors":"Sui Li ,&nbsp;Xingguang Deng ,&nbsp;Qiwei Li ,&nbsp;Zhiming Zhen ,&nbsp;Luyi Han ,&nbsp;Kang Chen ,&nbsp;Chaoyang Zhou ,&nbsp;Fengxi Chen ,&nbsp;Peiyu Huang ,&nbsp;Ruiting Zhang ,&nbsp;Hao Chen ,&nbsp;Tianyu Zhang ,&nbsp;Wei Chen ,&nbsp;Tao Tan ,&nbsp;Chen Liu","doi":"10.1016/j.neuroimage.2025.121475","DOIUrl":null,"url":null,"abstract":"<div><div>Ultrahigh-field susceptibility-weighted imaging (SWI) provides excellent tissue contrast and anatomical details of brain. However, ultrahigh-field magnetic resonance (MR) scanner often expensive and provides uncomfortable noise experience for patient. Therefore, some deep learning approaches have been proposed to synthesis high-field MR images from low-filed MR images, most existing methods rely on generative adversarial network (GAN) and achieve acceptable results. While the dilemma in train process of GAN, generally recognized, limits the synthesis performance in SWI images for its microvascular structure. Diffusion models, as a promising alternative, indirectly characterize the gaussian noise to the target image with a slow sampling through a considerable number of steps. To address this limitation, we presented a generative diffusion-based deep learning imaging model, named conditional denoising diffusion probabilistic model (CDDPM), for synthesizing high-field (7 Tesla) SWI images form low-field (3 Tesla) SWI images and assess clinical applicability. Crucially, the experiment results demonstrate that the diffusion-based model that synthesizes 7T SWI from 3T SWI images is potentially to providing an alternative way to achieve the advantages of ultra-high field 7T MR images for deep medullary veins visualization.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"320 ","pages":"Article 121475"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetizing SWI from 3T to 7T by generative diffusion network for deep medullary veins visualization\",\"authors\":\"Sui Li ,&nbsp;Xingguang Deng ,&nbsp;Qiwei Li ,&nbsp;Zhiming Zhen ,&nbsp;Luyi Han ,&nbsp;Kang Chen ,&nbsp;Chaoyang Zhou ,&nbsp;Fengxi Chen ,&nbsp;Peiyu Huang ,&nbsp;Ruiting Zhang ,&nbsp;Hao Chen ,&nbsp;Tianyu Zhang ,&nbsp;Wei Chen ,&nbsp;Tao Tan ,&nbsp;Chen Liu\",\"doi\":\"10.1016/j.neuroimage.2025.121475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ultrahigh-field susceptibility-weighted imaging (SWI) provides excellent tissue contrast and anatomical details of brain. However, ultrahigh-field magnetic resonance (MR) scanner often expensive and provides uncomfortable noise experience for patient. Therefore, some deep learning approaches have been proposed to synthesis high-field MR images from low-filed MR images, most existing methods rely on generative adversarial network (GAN) and achieve acceptable results. While the dilemma in train process of GAN, generally recognized, limits the synthesis performance in SWI images for its microvascular structure. Diffusion models, as a promising alternative, indirectly characterize the gaussian noise to the target image with a slow sampling through a considerable number of steps. To address this limitation, we presented a generative diffusion-based deep learning imaging model, named conditional denoising diffusion probabilistic model (CDDPM), for synthesizing high-field (7 Tesla) SWI images form low-field (3 Tesla) SWI images and assess clinical applicability. Crucially, the experiment results demonstrate that the diffusion-based model that synthesizes 7T SWI from 3T SWI images is potentially to providing an alternative way to achieve the advantages of ultra-high field 7T MR images for deep medullary veins visualization.</div></div>\",\"PeriodicalId\":19299,\"journal\":{\"name\":\"NeuroImage\",\"volume\":\"320 \",\"pages\":\"Article 121475\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroImage\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1053811925004781\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925004781","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

超高场磁化率加权成像(SWI)提供了出色的组织对比和大脑解剖细节。然而,超高场磁共振(MR)扫描仪通常价格昂贵,并且给患者带来不舒服的噪音体验。因此,人们提出了一些深度学习方法来从低场核磁共振图像合成高场核磁共振图像,现有的大多数方法依赖于生成对抗网络(GAN),并获得了可接受的结果。而GAN在训练过程中的困境,由于其微血管结构,限制了其在SWI图像中的合成性能。扩散模型作为一种很有前途的替代方法,通过相当多的步骤缓慢采样来间接表征目标图像的高斯噪声。为了解决这一限制,我们提出了一种基于生成扩散的深度学习成像模型,称为条件去噪扩散概率模型(CDDPM),用于从低场(3特斯拉)SWI图像合成高场(7特斯拉)SWI图像并评估临床适用性。至关重要的是,实验结果表明,基于扩散的模型从3T SWI图像中合成7T SWI,有可能为实现超高场7T MR图像的优势提供一种替代方法,用于深髓静脉可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthetizing SWI from 3T to 7T by generative diffusion network for deep medullary veins visualization
Ultrahigh-field susceptibility-weighted imaging (SWI) provides excellent tissue contrast and anatomical details of brain. However, ultrahigh-field magnetic resonance (MR) scanner often expensive and provides uncomfortable noise experience for patient. Therefore, some deep learning approaches have been proposed to synthesis high-field MR images from low-filed MR images, most existing methods rely on generative adversarial network (GAN) and achieve acceptable results. While the dilemma in train process of GAN, generally recognized, limits the synthesis performance in SWI images for its microvascular structure. Diffusion models, as a promising alternative, indirectly characterize the gaussian noise to the target image with a slow sampling through a considerable number of steps. To address this limitation, we presented a generative diffusion-based deep learning imaging model, named conditional denoising diffusion probabilistic model (CDDPM), for synthesizing high-field (7 Tesla) SWI images form low-field (3 Tesla) SWI images and assess clinical applicability. Crucially, the experiment results demonstrate that the diffusion-based model that synthesizes 7T SWI from 3T SWI images is potentially to providing an alternative way to achieve the advantages of ultra-high field 7T MR images for deep medullary veins visualization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信