{"title":"XIST缺失诱导依赖于细胞状态的可变转录反应。","authors":"Dongning Chen, Ikrame Naciri, Jie Wu, Sha Sun","doi":"10.3390/ncrna11050067","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: The X-inactivation specific transcript (XIST) is a long noncoding RNA playing a crucial regulatory role in X chromosome inactivation (XCI)-a transcriptional regulatory process that silences one of the two X chromosomes in females to ensure proper dosage compensation between male and female mammals. The transcription of <i>XIST</i> is maintained throughout a female's lifespan in all somatic cells, where XIST RNA binds to the X chromosome in <i>cis</i> and ensures chromosome-wide gene silencing. Disrupting <i>XIST</i> expression can lead to transcriptional reactivation of X-linked genes and epigenetic changes affecting cell development. The prevalence of XIST regulatory effects on mammalian transcription, however, remains unclarified. <b>Methods</b>: Here we performed a comparative expression analysis using RNA-sequencing datasets from recently published studies and examined the consequences of XIST-deletion on transcription at the whole genome, individual chromosome, and specific gene levels. We investigated the common differentially expressed genes (DEGs) and biological pathways following XIST loss across cell types, together with differential transcriptional analysis comparing the X chromosome and autosomes using cumulative distribution fractions. We analyzed the distribution of DEGs along the X chromosome with scatterplots and correlation analysis incorporating gene density and transposable elements. <b>Results</b>: Our findings indicate that the loss of XIST causes transcriptional changes in the X chromosome and autosomes that differ depending on cell type and state. XIST-deletion results in differential expression of genes subject to XCI-silencing as well as genes escaping XCI. In all the cell types we analyzed, X-linked genes show differential expression across the entire X chromosome in a cluster-like pattern according to gene density and, in certain cell types, correlate strongly with short interspersed nuclear element (SINE) distributions. <b>Conclusions</b>: Our results demonstrate that transcriptional roles of XIST can be highly associated with cell state: stem cells have different transcriptional responses compared to differentiated cells following XIST loss.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452299/pdf/","citationCount":"0","resultStr":"{\"title\":\"XIST Loss Induces Variable Transcriptional Responses Dependent on Cell States.\",\"authors\":\"Dongning Chen, Ikrame Naciri, Jie Wu, Sha Sun\",\"doi\":\"10.3390/ncrna11050067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives</b>: The X-inactivation specific transcript (XIST) is a long noncoding RNA playing a crucial regulatory role in X chromosome inactivation (XCI)-a transcriptional regulatory process that silences one of the two X chromosomes in females to ensure proper dosage compensation between male and female mammals. The transcription of <i>XIST</i> is maintained throughout a female's lifespan in all somatic cells, where XIST RNA binds to the X chromosome in <i>cis</i> and ensures chromosome-wide gene silencing. Disrupting <i>XIST</i> expression can lead to transcriptional reactivation of X-linked genes and epigenetic changes affecting cell development. The prevalence of XIST regulatory effects on mammalian transcription, however, remains unclarified. <b>Methods</b>: Here we performed a comparative expression analysis using RNA-sequencing datasets from recently published studies and examined the consequences of XIST-deletion on transcription at the whole genome, individual chromosome, and specific gene levels. We investigated the common differentially expressed genes (DEGs) and biological pathways following XIST loss across cell types, together with differential transcriptional analysis comparing the X chromosome and autosomes using cumulative distribution fractions. We analyzed the distribution of DEGs along the X chromosome with scatterplots and correlation analysis incorporating gene density and transposable elements. <b>Results</b>: Our findings indicate that the loss of XIST causes transcriptional changes in the X chromosome and autosomes that differ depending on cell type and state. XIST-deletion results in differential expression of genes subject to XCI-silencing as well as genes escaping XCI. In all the cell types we analyzed, X-linked genes show differential expression across the entire X chromosome in a cluster-like pattern according to gene density and, in certain cell types, correlate strongly with short interspersed nuclear element (SINE) distributions. <b>Conclusions</b>: Our results demonstrate that transcriptional roles of XIST can be highly associated with cell state: stem cells have different transcriptional responses compared to differentiated cells following XIST loss.</p>\",\"PeriodicalId\":19271,\"journal\":{\"name\":\"Non-Coding RNA\",\"volume\":\"11 5\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452299/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Non-Coding RNA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ncrna11050067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna11050067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
XIST Loss Induces Variable Transcriptional Responses Dependent on Cell States.
Background/Objectives: The X-inactivation specific transcript (XIST) is a long noncoding RNA playing a crucial regulatory role in X chromosome inactivation (XCI)-a transcriptional regulatory process that silences one of the two X chromosomes in females to ensure proper dosage compensation between male and female mammals. The transcription of XIST is maintained throughout a female's lifespan in all somatic cells, where XIST RNA binds to the X chromosome in cis and ensures chromosome-wide gene silencing. Disrupting XIST expression can lead to transcriptional reactivation of X-linked genes and epigenetic changes affecting cell development. The prevalence of XIST regulatory effects on mammalian transcription, however, remains unclarified. Methods: Here we performed a comparative expression analysis using RNA-sequencing datasets from recently published studies and examined the consequences of XIST-deletion on transcription at the whole genome, individual chromosome, and specific gene levels. We investigated the common differentially expressed genes (DEGs) and biological pathways following XIST loss across cell types, together with differential transcriptional analysis comparing the X chromosome and autosomes using cumulative distribution fractions. We analyzed the distribution of DEGs along the X chromosome with scatterplots and correlation analysis incorporating gene density and transposable elements. Results: Our findings indicate that the loss of XIST causes transcriptional changes in the X chromosome and autosomes that differ depending on cell type and state. XIST-deletion results in differential expression of genes subject to XCI-silencing as well as genes escaping XCI. In all the cell types we analyzed, X-linked genes show differential expression across the entire X chromosome in a cluster-like pattern according to gene density and, in certain cell types, correlate strongly with short interspersed nuclear element (SINE) distributions. Conclusions: Our results demonstrate that transcriptional roles of XIST can be highly associated with cell state: stem cells have different transcriptional responses compared to differentiated cells following XIST loss.
Non-Coding RNABiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍:
Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.