对水中雌激素作为新出现的污染物的系统综述:从一个健康角度的全球综述研究。

IF 4.4 Q1 TOXICOLOGY
Rhitor Lorca da Silva, Marco Antonio Lima E Silva, Tiago Porfírio Teixeira, Thaís Soares Farnesi de Assunção, Paula Pinheiro Teixeira, Wagner Antonio Tamagno, Thiago Lopes Rocha, Julio Cesar de Souza Inácio Gonçalves, Matheus Marcon
{"title":"对水中雌激素作为新出现的污染物的系统综述:从一个健康角度的全球综述研究。","authors":"Rhitor Lorca da Silva, Marco Antonio Lima E Silva, Tiago Porfírio Teixeira, Thaís Soares Farnesi de Assunção, Paula Pinheiro Teixeira, Wagner Antonio Tamagno, Thiago Lopes Rocha, Julio Cesar de Souza Inácio Gonçalves, Matheus Marcon","doi":"10.3390/jox15050148","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread presence of estrogens in aquatic environments represents a One Health concern, as it simultaneously threatens environmental integrity, wildlife health, and human well-being. These compounds, widely used in human and veterinary medicine, are excreted in partially or unmetabolized forms and persist in the environment due to the inefficiency of conventional water treatment systems in removing them. This systematic review provides a global overview of the occurrence of estrogens in water resources. We synthesized data on study characteristics, estrogen compounds detected, their concentrations, types of water bodies, and geographic locations. In total, 39 estrogens, including natural, synthetic, and metabolite forms, were reported at concentrations ranging from 0.002 to 10,380,000.0 ng/L across 40 water body types in 59 countries on all continents. The most frequently detected compounds were estrone, estradiol, and ethinylestradiol. Estrogens were predominantly identified in wastewater treatment plant effluents, rivers, lakes, surface waters, and even drinking water sources. These findings underscore the estrogen contamination and its potential to disrupt endocrine functions across species, posing serious implications for ecosystems. Within the One Health framework, this review highlights the urgent need for integrated strategies to improve water quality monitoring, develop advanced treatment technologies, and update regulatory standards to address the multifaceted risks posed by estrogenic contaminants.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 5","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452746/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Systematic Review of Estrogens as Emerging Contaminants in Water: A Global Overview Study from the One Health Perspective.\",\"authors\":\"Rhitor Lorca da Silva, Marco Antonio Lima E Silva, Tiago Porfírio Teixeira, Thaís Soares Farnesi de Assunção, Paula Pinheiro Teixeira, Wagner Antonio Tamagno, Thiago Lopes Rocha, Julio Cesar de Souza Inácio Gonçalves, Matheus Marcon\",\"doi\":\"10.3390/jox15050148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The widespread presence of estrogens in aquatic environments represents a One Health concern, as it simultaneously threatens environmental integrity, wildlife health, and human well-being. These compounds, widely used in human and veterinary medicine, are excreted in partially or unmetabolized forms and persist in the environment due to the inefficiency of conventional water treatment systems in removing them. This systematic review provides a global overview of the occurrence of estrogens in water resources. We synthesized data on study characteristics, estrogen compounds detected, their concentrations, types of water bodies, and geographic locations. In total, 39 estrogens, including natural, synthetic, and metabolite forms, were reported at concentrations ranging from 0.002 to 10,380,000.0 ng/L across 40 water body types in 59 countries on all continents. The most frequently detected compounds were estrone, estradiol, and ethinylestradiol. Estrogens were predominantly identified in wastewater treatment plant effluents, rivers, lakes, surface waters, and even drinking water sources. These findings underscore the estrogen contamination and its potential to disrupt endocrine functions across species, posing serious implications for ecosystems. Within the One Health framework, this review highlights the urgent need for integrated strategies to improve water quality monitoring, develop advanced treatment technologies, and update regulatory standards to address the multifaceted risks posed by estrogenic contaminants.</p>\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452746/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox15050148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15050148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

雌激素在水生环境中的广泛存在代表了“同一个健康”问题,因为它同时威胁着环境完整性、野生动物健康和人类福祉。这些广泛用于人类和兽药的化合物以部分或未代谢的形式排出,并由于传统水处理系统在去除它们方面效率低下而持续存在于环境中。这篇系统的综述提供了水资源中雌激素发生的全球概况。我们综合了研究特征、检测到的雌激素化合物、它们的浓度、水体类型和地理位置的数据。据报告,在各大洲59个国家的40种水体类型中,共有39种雌激素(包括天然、合成和代谢物形式)的浓度从0.002至10,380,000.0纳克/升不等。最常检测到的化合物是雌酮、雌二醇和炔雌醇。雌激素主要存在于污水处理厂流出物、河流、湖泊、地表水甚至饮用水源中。这些发现强调了雌激素污染及其对物种内分泌功能的潜在破坏,对生态系统造成严重影响。在“同一个健康”框架下,本综述强调迫切需要制定综合战略,以改善水质监测,开发先进的处理技术,并更新监管标准,以应对雌激素污染物带来的多方面风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Systematic Review of Estrogens as Emerging Contaminants in Water: A Global Overview Study from the One Health Perspective.

The widespread presence of estrogens in aquatic environments represents a One Health concern, as it simultaneously threatens environmental integrity, wildlife health, and human well-being. These compounds, widely used in human and veterinary medicine, are excreted in partially or unmetabolized forms and persist in the environment due to the inefficiency of conventional water treatment systems in removing them. This systematic review provides a global overview of the occurrence of estrogens in water resources. We synthesized data on study characteristics, estrogen compounds detected, their concentrations, types of water bodies, and geographic locations. In total, 39 estrogens, including natural, synthetic, and metabolite forms, were reported at concentrations ranging from 0.002 to 10,380,000.0 ng/L across 40 water body types in 59 countries on all continents. The most frequently detected compounds were estrone, estradiol, and ethinylestradiol. Estrogens were predominantly identified in wastewater treatment plant effluents, rivers, lakes, surface waters, and even drinking water sources. These findings underscore the estrogen contamination and its potential to disrupt endocrine functions across species, posing serious implications for ecosystems. Within the One Health framework, this review highlights the urgent need for integrated strategies to improve water quality monitoring, develop advanced treatment technologies, and update regulatory standards to address the multifaceted risks posed by estrogenic contaminants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
1.70%
发文量
21
审稿时长
10 weeks
期刊介绍: The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信