片剂基质对市售制剂中布洛芬、萘普生和萘普生钠含量多态性的影响分析

IF 2 Q3 BIOCHEMICAL RESEARCH METHODS
Edyta Leyk, Marcin Środa, Gracjan Maślanka, Patrycja Nowaczyk, Amelia Orzołek, Hanna Grodzka, Aleksandra Kurek, Olaf Knut, Julia Michalak, Jonatan Płachciak, Alina Plenis
{"title":"片剂基质对市售制剂中布洛芬、萘普生和萘普生钠含量多态性的影响分析","authors":"Edyta Leyk, Marcin Środa, Gracjan Maślanka, Patrycja Nowaczyk, Amelia Orzołek, Hanna Grodzka, Aleksandra Kurek, Olaf Knut, Julia Michalak, Jonatan Płachciak, Alina Plenis","doi":"10.3390/mps8050099","DOIUrl":null,"url":null,"abstract":"<p><p>Pharmaceutical formulations, in addition to the medicinal substance(s), contain added excipients that make it possible to create a pharmaceutical product that exhibits required properties in terms of mechanical, physical, chemical, and microbiological stability. Additionally, these substances can act as release modifiers or improve bioavailability parameters. Literature data indicate that excipients, especially polymeric ones, can also affect the polymorphism of the active substance, resulting in drug bioavailability enhancement or reduction. This influence can be evaluated using thermal and spectroscopic methods. In the study, differential scanning calorimetry (DSC), vibrational spectroscopic studies (Fourier transform infrared spectroscopy, FTIR), Raman spectroscopy, and X-ray diffraction (XRD) assay of ibuprofen, naproxen, and naproxen sodium standards and pharmaceutical preparations containing these medicinal substances in their compositions were carried out. DSC results indicated that a sharp melting peak was observed on the DSC curves of the standards, confirming their crystalline form. DSC results obtained for pharmaceutical formulations also indicated that the enthalpy of melting is sometimes lower than calculated from the percentage of active ingredients in the formulations. In addition, the melting peak is often broadened and shifted toward lower temperatures, suggesting the influence of excipients on the polymorphism of drug substances. The FTIR and Raman spectra of pharmaceutical formulations contained all characteristics of the active substances. XRD analysis was also performed. Therefore, possible chemical interactions between the components of the preparations have been excluded. At the same time, FTIR and Raman spectroscopy results as well as XRD assay showed a reduction in the height of signals corresponding to the crystalline API form, confirming the possibility of reducing API crystallinity in pharmaceutical formulations.</p>","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":"8 5","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452562/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Effect of the Tablet Matrix on the Polymorphism of Ibuprofen, Naproxen, and Naproxen Sodium in Commercially Available Pharmaceutical Formulations.\",\"authors\":\"Edyta Leyk, Marcin Środa, Gracjan Maślanka, Patrycja Nowaczyk, Amelia Orzołek, Hanna Grodzka, Aleksandra Kurek, Olaf Knut, Julia Michalak, Jonatan Płachciak, Alina Plenis\",\"doi\":\"10.3390/mps8050099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pharmaceutical formulations, in addition to the medicinal substance(s), contain added excipients that make it possible to create a pharmaceutical product that exhibits required properties in terms of mechanical, physical, chemical, and microbiological stability. Additionally, these substances can act as release modifiers or improve bioavailability parameters. Literature data indicate that excipients, especially polymeric ones, can also affect the polymorphism of the active substance, resulting in drug bioavailability enhancement or reduction. This influence can be evaluated using thermal and spectroscopic methods. In the study, differential scanning calorimetry (DSC), vibrational spectroscopic studies (Fourier transform infrared spectroscopy, FTIR), Raman spectroscopy, and X-ray diffraction (XRD) assay of ibuprofen, naproxen, and naproxen sodium standards and pharmaceutical preparations containing these medicinal substances in their compositions were carried out. DSC results indicated that a sharp melting peak was observed on the DSC curves of the standards, confirming their crystalline form. DSC results obtained for pharmaceutical formulations also indicated that the enthalpy of melting is sometimes lower than calculated from the percentage of active ingredients in the formulations. In addition, the melting peak is often broadened and shifted toward lower temperatures, suggesting the influence of excipients on the polymorphism of drug substances. The FTIR and Raman spectra of pharmaceutical formulations contained all characteristics of the active substances. XRD analysis was also performed. Therefore, possible chemical interactions between the components of the preparations have been excluded. At the same time, FTIR and Raman spectroscopy results as well as XRD assay showed a reduction in the height of signals corresponding to the crystalline API form, confirming the possibility of reducing API crystallinity in pharmaceutical formulations.</p>\",\"PeriodicalId\":18715,\"journal\":{\"name\":\"Methods and Protocols\",\"volume\":\"8 5\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452562/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods and Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mps8050099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mps8050099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

药物制剂,除药用物质外,还含有添加的赋形剂,这些赋形剂使制造在机械、物理、化学和微生物稳定性方面表现出所需性能的药品成为可能。此外,这些物质可以作为释放调节剂或改善生物利用度参数。文献资料表明,赋形剂,尤其是聚合物赋形剂,还可以影响活性物质的多态性,从而提高或降低药物的生物利用度。这种影响可以用热学和光谱方法来评估。采用差示扫描量热法(DSC)、振动光谱(傅里叶变换红外光谱(FTIR)、拉曼光谱(Raman)和x射线衍射(XRD)对布洛芬、萘普生、萘普生钠标准品和含有这些药物成分的制剂进行了分析。DSC结果表明,在标准品的DSC曲线上观察到一个明显的熔化峰,证实了它们的结晶形态。药物制剂的DSC结果也表明,熔化焓有时低于从配方中活性成分的百分比计算出来的焓。此外,熔峰经常变宽并向低温方向移动,表明辅料对原料药多态性的影响。药物制剂的红外光谱和拉曼光谱包含了活性物质的所有特征。并进行了XRD分析。因此,排除了制剂组分之间可能的化学相互作用。同时,FTIR和拉曼光谱以及XRD分析结果显示,API结晶形态对应的信号高度降低,证实了药物配方中API结晶度降低的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the Effect of the Tablet Matrix on the Polymorphism of Ibuprofen, Naproxen, and Naproxen Sodium in Commercially Available Pharmaceutical Formulations.

Pharmaceutical formulations, in addition to the medicinal substance(s), contain added excipients that make it possible to create a pharmaceutical product that exhibits required properties in terms of mechanical, physical, chemical, and microbiological stability. Additionally, these substances can act as release modifiers or improve bioavailability parameters. Literature data indicate that excipients, especially polymeric ones, can also affect the polymorphism of the active substance, resulting in drug bioavailability enhancement or reduction. This influence can be evaluated using thermal and spectroscopic methods. In the study, differential scanning calorimetry (DSC), vibrational spectroscopic studies (Fourier transform infrared spectroscopy, FTIR), Raman spectroscopy, and X-ray diffraction (XRD) assay of ibuprofen, naproxen, and naproxen sodium standards and pharmaceutical preparations containing these medicinal substances in their compositions were carried out. DSC results indicated that a sharp melting peak was observed on the DSC curves of the standards, confirming their crystalline form. DSC results obtained for pharmaceutical formulations also indicated that the enthalpy of melting is sometimes lower than calculated from the percentage of active ingredients in the formulations. In addition, the melting peak is often broadened and shifted toward lower temperatures, suggesting the influence of excipients on the polymorphism of drug substances. The FTIR and Raman spectra of pharmaceutical formulations contained all characteristics of the active substances. XRD analysis was also performed. Therefore, possible chemical interactions between the components of the preparations have been excluded. At the same time, FTIR and Raman spectroscopy results as well as XRD assay showed a reduction in the height of signals corresponding to the crystalline API form, confirming the possibility of reducing API crystallinity in pharmaceutical formulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Methods and Protocols
Methods and Protocols Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
85
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信