基于深度学习的共轭轨道角动量干涉法面内位移测量。

IF 1.5 3区 物理与天体物理 Q3 OPTICS
Qinyu Li, Zhanwu Xie, Yuanheng Shi, Wei Xia, Dongmei Guo
{"title":"基于深度学习的共轭轨道角动量干涉法面内位移测量。","authors":"Qinyu Li, Zhanwu Xie, Yuanheng Shi, Wei Xia, Dongmei Guo","doi":"10.1364/JOSAA.570239","DOIUrl":null,"url":null,"abstract":"<p><p>A deep learning-based phase demodulation algorithm is proposed for measuring in-plane displacements in conjugate orbital angular momentum (OAM) interferometry. The phase demodulation hybrid neural network (PDHNN) is designed to directly demodulate petal-shaped interferograms in a single step. PDHNN employs a custom ResNet-transformer architecture with deformable convolutions and attention mechanisms to extract rotation-sensitive features from petal-shaped interferograms for robust phase demodulation. The algorithm has been validated using both simulated and experimental data. Experimental results show that the demodulation accuracy reaches 91.60% within an error margin of 1°, and within a 0.1° error range, the average displacement error is 0.13 nm, demonstrating high robustness and stability in noisy conditions.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"42 9","pages":"1376-1384"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning-based conjugate orbital angular momentum interferometry for in-plane displacement measurement.\",\"authors\":\"Qinyu Li, Zhanwu Xie, Yuanheng Shi, Wei Xia, Dongmei Guo\",\"doi\":\"10.1364/JOSAA.570239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A deep learning-based phase demodulation algorithm is proposed for measuring in-plane displacements in conjugate orbital angular momentum (OAM) interferometry. The phase demodulation hybrid neural network (PDHNN) is designed to directly demodulate petal-shaped interferograms in a single step. PDHNN employs a custom ResNet-transformer architecture with deformable convolutions and attention mechanisms to extract rotation-sensitive features from petal-shaped interferograms for robust phase demodulation. The algorithm has been validated using both simulated and experimental data. Experimental results show that the demodulation accuracy reaches 91.60% within an error margin of 1°, and within a 0.1° error range, the average displacement error is 0.13 nm, demonstrating high robustness and stability in noisy conditions.</p>\",\"PeriodicalId\":17382,\"journal\":{\"name\":\"Journal of The Optical Society of America A-optics Image Science and Vision\",\"volume\":\"42 9\",\"pages\":\"1376-1384\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Optical Society of America A-optics Image Science and Vision\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/JOSAA.570239\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.570239","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于深度学习的相位解调算法,用于共轭轨道角动量干涉测量中面内位移的测量。设计了相位解调混合神经网络(PDHNN),用于单步直接解调花瓣型干涉图。PDHNN采用自定义resnet变压器架构,具有可变形的卷积和注意机制,从花瓣形干涉图中提取旋转敏感特征,用于鲁棒相位解调。仿真和实验数据验证了该算法的有效性。实验结果表明,在1°的误差范围内,解调精度达到91.60%,在0.1°的误差范围内,平均位移误差为0.13 nm,在噪声条件下具有较高的鲁棒性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning-based conjugate orbital angular momentum interferometry for in-plane displacement measurement.

A deep learning-based phase demodulation algorithm is proposed for measuring in-plane displacements in conjugate orbital angular momentum (OAM) interferometry. The phase demodulation hybrid neural network (PDHNN) is designed to directly demodulate petal-shaped interferograms in a single step. PDHNN employs a custom ResNet-transformer architecture with deformable convolutions and attention mechanisms to extract rotation-sensitive features from petal-shaped interferograms for robust phase demodulation. The algorithm has been validated using both simulated and experimental data. Experimental results show that the demodulation accuracy reaches 91.60% within an error margin of 1°, and within a 0.1° error range, the average displacement error is 0.13 nm, demonstrating high robustness and stability in noisy conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
10.50%
发文量
417
审稿时长
3 months
期刊介绍: The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as: * Atmospheric optics * Clinical vision * Coherence and Statistical Optics * Color * Diffraction and gratings * Image processing * Machine vision * Physiological optics * Polarization * Scattering * Signal processing * Thin films * Visual optics Also: j opt soc am a.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信