国家ENACT网络中自然语言处理算法的开发与验证。

IF 2 Q3 MEDICINE, RESEARCH & EXPERIMENTAL
Journal of Clinical and Translational Science Pub Date : 2025-08-22 eCollection Date: 2025-01-01 DOI:10.1017/cts.2025.10116
Yanshan Wang, Jordan Hilsman, Chenyu Li, Michele Morris, Paul M Heider, Sunyang Fu, Min Ji Kwak, Andrew Wen, Joseph R Applegate, Liwei Wang, Elmer Bernstam, Hongfang Liu, Jack Chang, Daniel R Harris, Alexandria Corbeau, Darren Henderson, John Osborne, Richard E Kennedy, Nelly-Estefanie Garduno-Rapp, Justin F Rousseau, Chao Yan, You Chen, Mayur B Patel, Tyler J Murphy, Bradley A Malin, Chan Mi Park, Jungwei W Fan, Sunghwan Sohn, Sandeep Pagali, Yifan Peng, Aman Pathak, Yonghui Wu, Zongqi Xia, Salvatore Loguercio, Steven E Reis, Shyam Visweswaran
{"title":"国家ENACT网络中自然语言处理算法的开发与验证。","authors":"Yanshan Wang, Jordan Hilsman, Chenyu Li, Michele Morris, Paul M Heider, Sunyang Fu, Min Ji Kwak, Andrew Wen, Joseph R Applegate, Liwei Wang, Elmer Bernstam, Hongfang Liu, Jack Chang, Daniel R Harris, Alexandria Corbeau, Darren Henderson, John Osborne, Richard E Kennedy, Nelly-Estefanie Garduno-Rapp, Justin F Rousseau, Chao Yan, You Chen, Mayur B Patel, Tyler J Murphy, Bradley A Malin, Chan Mi Park, Jungwei W Fan, Sunghwan Sohn, Sandeep Pagali, Yifan Peng, Aman Pathak, Yonghui Wu, Zongqi Xia, Salvatore Loguercio, Steven E Reis, Shyam Visweswaran","doi":"10.1017/cts.2025.10116","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Electronic Health Record (EHR) data are critical for advancing translational research and AI technologies. The ENACT network offers access to structured EHR data across 57 CTSA hubs. However, substantial information is contained in clinical narratives, requiring natural language processing (NLP) for research. The ENACT NLP Working Group was formed to make NLP-derived clinical information accessible and queryable across the network.</p><p><strong>Methods: </strong>We established the ENACT NLP Working Group with 13 sites selected based on criteria including clinical notes access, IT infrastructure, NLP expertise, and institutional support. We divided sites into five focus groups targeting clinical tasks within disease contexts. Each focus group consisted of two development sites and two validation sites. We extended the ENACT ontology to standardize NLP-derived data and conducted multisite evaluations using the Open Health Natural Language Processing (OHNLP) Toolkit.</p><p><strong>Results: </strong>The working group achieved 100% site retention and deployed NLP infrastructure across all sites. We developed and validated NLP algorithms for rare disease phenotyping, social determinants of health, opioid use disorder, sleep phenotyping, and delirium phenotyping. Performance varied across sites (F1 scores 0.53-0.96), highlighting data heterogeneity impacts. We extended the ENACT common data model and ontology to incorporate NLP-derived data while maintaining Shared Health Research Informatics NEtwork (SHRINE) compatibility.</p><p><strong>Conclusion: </strong>This demonstrates feasibility of deploying NLP infrastructure across large, federated networks. The focus group approach proved more practical than general-purpose approaches. Key lessons include the challenge of data heterogeneity and importance of collaborative governance. This work also provides a foundation that other networks can build on to implement NLP capabilities for translational research.</p>","PeriodicalId":15529,"journal":{"name":"Journal of Clinical and Translational Science","volume":"9 1","pages":"e199"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12444719/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and validation of natural language processing algorithms in the national ENACT network.\",\"authors\":\"Yanshan Wang, Jordan Hilsman, Chenyu Li, Michele Morris, Paul M Heider, Sunyang Fu, Min Ji Kwak, Andrew Wen, Joseph R Applegate, Liwei Wang, Elmer Bernstam, Hongfang Liu, Jack Chang, Daniel R Harris, Alexandria Corbeau, Darren Henderson, John Osborne, Richard E Kennedy, Nelly-Estefanie Garduno-Rapp, Justin F Rousseau, Chao Yan, You Chen, Mayur B Patel, Tyler J Murphy, Bradley A Malin, Chan Mi Park, Jungwei W Fan, Sunghwan Sohn, Sandeep Pagali, Yifan Peng, Aman Pathak, Yonghui Wu, Zongqi Xia, Salvatore Loguercio, Steven E Reis, Shyam Visweswaran\",\"doi\":\"10.1017/cts.2025.10116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Electronic Health Record (EHR) data are critical for advancing translational research and AI technologies. The ENACT network offers access to structured EHR data across 57 CTSA hubs. However, substantial information is contained in clinical narratives, requiring natural language processing (NLP) for research. The ENACT NLP Working Group was formed to make NLP-derived clinical information accessible and queryable across the network.</p><p><strong>Methods: </strong>We established the ENACT NLP Working Group with 13 sites selected based on criteria including clinical notes access, IT infrastructure, NLP expertise, and institutional support. We divided sites into five focus groups targeting clinical tasks within disease contexts. Each focus group consisted of two development sites and two validation sites. We extended the ENACT ontology to standardize NLP-derived data and conducted multisite evaluations using the Open Health Natural Language Processing (OHNLP) Toolkit.</p><p><strong>Results: </strong>The working group achieved 100% site retention and deployed NLP infrastructure across all sites. We developed and validated NLP algorithms for rare disease phenotyping, social determinants of health, opioid use disorder, sleep phenotyping, and delirium phenotyping. Performance varied across sites (F1 scores 0.53-0.96), highlighting data heterogeneity impacts. We extended the ENACT common data model and ontology to incorporate NLP-derived data while maintaining Shared Health Research Informatics NEtwork (SHRINE) compatibility.</p><p><strong>Conclusion: </strong>This demonstrates feasibility of deploying NLP infrastructure across large, federated networks. The focus group approach proved more practical than general-purpose approaches. Key lessons include the challenge of data heterogeneity and importance of collaborative governance. This work also provides a foundation that other networks can build on to implement NLP capabilities for translational research.</p>\",\"PeriodicalId\":15529,\"journal\":{\"name\":\"Journal of Clinical and Translational Science\",\"volume\":\"9 1\",\"pages\":\"e199\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12444719/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical and Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/cts.2025.10116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/cts.2025.10116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:电子健康记录(EHR)数据对于推进转化研究和人工智能技术至关重要。ENACT网络提供对57个CTSA中心的结构化电子病历数据的访问。然而,临床叙述中包含大量信息,需要自然语言处理(NLP)进行研究。ENACT NLP工作组的成立是为了使NLP衍生的临床信息在网络上可访问和查询。方法:我们建立了ENACT NLP工作组,根据临床记录访问、IT基础设施、NLP专业知识和机构支持等标准选择了13个站点。我们将网站分为五个焦点小组,针对疾病背景下的临床任务。每个焦点小组由两个开发站点和两个验证站点组成。我们扩展了ENACT本体来标准化nlp衍生的数据,并使用开放健康自然语言处理(OHNLP)工具包进行了多站点评估。结果:工作组实现了100%的站点保留,并在所有站点部署了NLP基础设施。我们开发并验证了用于罕见疾病表型、健康社会决定因素、阿片类药物使用障碍、睡眠表型和谵妄表型的NLP算法。不同站点的性能不同(F1得分为0.53-0.96),突出了数据异质性的影响。我们扩展了ENACT公共数据模型和本体,以纳入nlp衍生的数据,同时保持共享健康研究信息学网络(SHRINE)的兼容性。结论:这证明了跨大型联合网络部署NLP基础设施的可行性。事实证明,焦点小组方法比通用方法更实用。关键的经验教训包括数据异构的挑战和协作治理的重要性。这项工作也为其他网络提供了一个基础,可以在此基础上实现翻译研究的NLP能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development and validation of natural language processing algorithms in the national ENACT network.

Development and validation of natural language processing algorithms in the national ENACT network.

Development and validation of natural language processing algorithms in the national ENACT network.

Development and validation of natural language processing algorithms in the national ENACT network.

Objective: Electronic Health Record (EHR) data are critical for advancing translational research and AI technologies. The ENACT network offers access to structured EHR data across 57 CTSA hubs. However, substantial information is contained in clinical narratives, requiring natural language processing (NLP) for research. The ENACT NLP Working Group was formed to make NLP-derived clinical information accessible and queryable across the network.

Methods: We established the ENACT NLP Working Group with 13 sites selected based on criteria including clinical notes access, IT infrastructure, NLP expertise, and institutional support. We divided sites into five focus groups targeting clinical tasks within disease contexts. Each focus group consisted of two development sites and two validation sites. We extended the ENACT ontology to standardize NLP-derived data and conducted multisite evaluations using the Open Health Natural Language Processing (OHNLP) Toolkit.

Results: The working group achieved 100% site retention and deployed NLP infrastructure across all sites. We developed and validated NLP algorithms for rare disease phenotyping, social determinants of health, opioid use disorder, sleep phenotyping, and delirium phenotyping. Performance varied across sites (F1 scores 0.53-0.96), highlighting data heterogeneity impacts. We extended the ENACT common data model and ontology to incorporate NLP-derived data while maintaining Shared Health Research Informatics NEtwork (SHRINE) compatibility.

Conclusion: This demonstrates feasibility of deploying NLP infrastructure across large, federated networks. The focus group approach proved more practical than general-purpose approaches. Key lessons include the challenge of data heterogeneity and importance of collaborative governance. This work also provides a foundation that other networks can build on to implement NLP capabilities for translational research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Clinical and Translational Science
Journal of Clinical and Translational Science MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
2.80
自引率
26.90%
发文量
437
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信