Kaifei Liu, Ning Li, Chuhan Lin, Yi Ma, Zhonglei Xing, Yuhong Su, Mengjiao Li
{"title":"柠檬酸作为土壤浸出剂对砷污染土壤的植物修复:迁移、植物吸收和修复效果。","authors":"Kaifei Liu, Ning Li, Chuhan Lin, Yi Ma, Zhonglei Xing, Yuhong Su, Mengjiao Li","doi":"10.1080/15226514.2025.2560537","DOIUrl":null,"url":null,"abstract":"<p><p>Phytoremediation and soil washing are effective methods for the remediation of arsenic-contaminated soil. In this study, citric acid solution was utilized as a soil leaching agent for in-situ leaching of arsenic-contaminated soil <i>via</i> drip irrigation, aiming to explore the migration and distribution of arsenic in the soil. Hydroponic experiments were conducted to investigate the influence of citric acid on plant absorption and translocation of arsenic. Finally, intercropping of <i>Brassica rapa</i> L. ssp. <i>chinensis</i> and <i>Zea mays</i> L. was carried out under drip irrigation, to explore the effectiveness of citric acid as a soil leaching agent in phytoremediation of arsenic-contaminated soil. The results indicated that after drip irrigation with citric acid solution, the arsenic in the soil undergoes directional migration and exhibits differentiated distribution. Citric acid significantly affected the absorption and transport of arsenic in <i>Brassica rapa</i> L. ssp. <i>chinensis</i> and <i>Zea mays</i> L. Notably, the lowest arsenic content in <i>Brassica rapa</i> L. ssp. <i>chinensis</i> was observed at a citric acid concentration of 2 mmol·L<sup>-1</sup>. After drip irrigation with 2 mmol·L<sup>-1</sup> citric acid solution, the arsenic content in <i>Zea mays</i> L. (remediation plant) increased by 23.34%, while the arsenic content in <i>Brassica rapa</i> L. ssp. <i>chinensis</i> decreased by 10.70%. As a soil leaching agent, citric acid effectively enhanced the phytoremediation of arsenic-contaminated soil.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-9"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Citric acid as a soil leaching agent for phytoremediation of arsenic-contaminated soil: migration, plant uptake and remediation efficacy.\",\"authors\":\"Kaifei Liu, Ning Li, Chuhan Lin, Yi Ma, Zhonglei Xing, Yuhong Su, Mengjiao Li\",\"doi\":\"10.1080/15226514.2025.2560537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phytoremediation and soil washing are effective methods for the remediation of arsenic-contaminated soil. In this study, citric acid solution was utilized as a soil leaching agent for in-situ leaching of arsenic-contaminated soil <i>via</i> drip irrigation, aiming to explore the migration and distribution of arsenic in the soil. Hydroponic experiments were conducted to investigate the influence of citric acid on plant absorption and translocation of arsenic. Finally, intercropping of <i>Brassica rapa</i> L. ssp. <i>chinensis</i> and <i>Zea mays</i> L. was carried out under drip irrigation, to explore the effectiveness of citric acid as a soil leaching agent in phytoremediation of arsenic-contaminated soil. The results indicated that after drip irrigation with citric acid solution, the arsenic in the soil undergoes directional migration and exhibits differentiated distribution. Citric acid significantly affected the absorption and transport of arsenic in <i>Brassica rapa</i> L. ssp. <i>chinensis</i> and <i>Zea mays</i> L. Notably, the lowest arsenic content in <i>Brassica rapa</i> L. ssp. <i>chinensis</i> was observed at a citric acid concentration of 2 mmol·L<sup>-1</sup>. After drip irrigation with 2 mmol·L<sup>-1</sup> citric acid solution, the arsenic content in <i>Zea mays</i> L. (remediation plant) increased by 23.34%, while the arsenic content in <i>Brassica rapa</i> L. ssp. <i>chinensis</i> decreased by 10.70%. As a soil leaching agent, citric acid effectively enhanced the phytoremediation of arsenic-contaminated soil.</p>\",\"PeriodicalId\":14235,\"journal\":{\"name\":\"International Journal of Phytoremediation\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Phytoremediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15226514.2025.2560537\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2560537","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Citric acid as a soil leaching agent for phytoremediation of arsenic-contaminated soil: migration, plant uptake and remediation efficacy.
Phytoremediation and soil washing are effective methods for the remediation of arsenic-contaminated soil. In this study, citric acid solution was utilized as a soil leaching agent for in-situ leaching of arsenic-contaminated soil via drip irrigation, aiming to explore the migration and distribution of arsenic in the soil. Hydroponic experiments were conducted to investigate the influence of citric acid on plant absorption and translocation of arsenic. Finally, intercropping of Brassica rapa L. ssp. chinensis and Zea mays L. was carried out under drip irrigation, to explore the effectiveness of citric acid as a soil leaching agent in phytoremediation of arsenic-contaminated soil. The results indicated that after drip irrigation with citric acid solution, the arsenic in the soil undergoes directional migration and exhibits differentiated distribution. Citric acid significantly affected the absorption and transport of arsenic in Brassica rapa L. ssp. chinensis and Zea mays L. Notably, the lowest arsenic content in Brassica rapa L. ssp. chinensis was observed at a citric acid concentration of 2 mmol·L-1. After drip irrigation with 2 mmol·L-1 citric acid solution, the arsenic content in Zea mays L. (remediation plant) increased by 23.34%, while the arsenic content in Brassica rapa L. ssp. chinensis decreased by 10.70%. As a soil leaching agent, citric acid effectively enhanced the phytoremediation of arsenic-contaminated soil.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.