Eskandar Qaed, Waleed Aldahmash, Mueataz A Mahyoub
{"title":"晚期糖基化终产物(AGEs)及其在糖尿病和相关并发症中的作用:机制和治疗见解。","authors":"Eskandar Qaed, Waleed Aldahmash, Mueataz A Mahyoub","doi":"10.1007/s10719-025-10194-x","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus (DM) is marked by prolonged elevated blood glucose levels, which lead to the formation of covalent adducts between glucose and plasma proteins through a non-enzymatic reaction called glycation. This biochemical process plays a crucial role in the development of DM complications, including retinopathy, nephropathy, neuropathy, and cardiomyopathy, while also impacting conditions such as rheumatoid arthritis, osteoporosis, and aging. Glycation alters the molecular structure, enzymatic activity, and receptor interactions of proteins, affecting their normal functions. Advanced glycation end products (AGEs) arise from these modifications, forming cross-links within and between cells, which affect proteins and other vital biomolecules, such as lipids and nucleic acids. This contributes significantly to the complex complications associated with DM. Recent studies highlight the interaction between AGEs and their specific receptors, receptor for advanced glycation end products (RAGE), located on the plasma membrane. This involvement initiates changes in intracellular signaling, alters gene expression, and stimulates the release of pro-inflammatory cytokines and reactive oxygen species. This review examines the glycation of key plasma proteins albumin, fibrinogen, globulins, and collagen and discusses the various AGEs formed. Furthermore, it elucidates the role of AGEs in the exacerbation of DM complications, providing a comprehensive overview of the molecular pathways involved and the systemic impact of these glycation products.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced glycation end products (AGEs) and their role in diabetes mellitus and related complications: mechanisms and therapeutic insights.\",\"authors\":\"Eskandar Qaed, Waleed Aldahmash, Mueataz A Mahyoub\",\"doi\":\"10.1007/s10719-025-10194-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes mellitus (DM) is marked by prolonged elevated blood glucose levels, which lead to the formation of covalent adducts between glucose and plasma proteins through a non-enzymatic reaction called glycation. This biochemical process plays a crucial role in the development of DM complications, including retinopathy, nephropathy, neuropathy, and cardiomyopathy, while also impacting conditions such as rheumatoid arthritis, osteoporosis, and aging. Glycation alters the molecular structure, enzymatic activity, and receptor interactions of proteins, affecting their normal functions. Advanced glycation end products (AGEs) arise from these modifications, forming cross-links within and between cells, which affect proteins and other vital biomolecules, such as lipids and nucleic acids. This contributes significantly to the complex complications associated with DM. Recent studies highlight the interaction between AGEs and their specific receptors, receptor for advanced glycation end products (RAGE), located on the plasma membrane. This involvement initiates changes in intracellular signaling, alters gene expression, and stimulates the release of pro-inflammatory cytokines and reactive oxygen species. This review examines the glycation of key plasma proteins albumin, fibrinogen, globulins, and collagen and discusses the various AGEs formed. Furthermore, it elucidates the role of AGEs in the exacerbation of DM complications, providing a comprehensive overview of the molecular pathways involved and the systemic impact of these glycation products.</p>\",\"PeriodicalId\":12762,\"journal\":{\"name\":\"Glycoconjugate Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glycoconjugate Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10719-025-10194-x\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycoconjugate Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10719-025-10194-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Advanced glycation end products (AGEs) and their role in diabetes mellitus and related complications: mechanisms and therapeutic insights.
Diabetes mellitus (DM) is marked by prolonged elevated blood glucose levels, which lead to the formation of covalent adducts between glucose and plasma proteins through a non-enzymatic reaction called glycation. This biochemical process plays a crucial role in the development of DM complications, including retinopathy, nephropathy, neuropathy, and cardiomyopathy, while also impacting conditions such as rheumatoid arthritis, osteoporosis, and aging. Glycation alters the molecular structure, enzymatic activity, and receptor interactions of proteins, affecting their normal functions. Advanced glycation end products (AGEs) arise from these modifications, forming cross-links within and between cells, which affect proteins and other vital biomolecules, such as lipids and nucleic acids. This contributes significantly to the complex complications associated with DM. Recent studies highlight the interaction between AGEs and their specific receptors, receptor for advanced glycation end products (RAGE), located on the plasma membrane. This involvement initiates changes in intracellular signaling, alters gene expression, and stimulates the release of pro-inflammatory cytokines and reactive oxygen species. This review examines the glycation of key plasma proteins albumin, fibrinogen, globulins, and collagen and discusses the various AGEs formed. Furthermore, it elucidates the role of AGEs in the exacerbation of DM complications, providing a comprehensive overview of the molecular pathways involved and the systemic impact of these glycation products.
期刊介绍:
Glycoconjugate Journal publishes articles and reviews on all areas concerned with:
function, composition, structure, biosynthesis, degradation, interactions, recognition and chemo-enzymatic synthesis of glycoconjugates (glycoproteins, glycolipids, oligosaccharides, polysaccharides and proteoglycans), biochemistry, molecular biology, biotechnology, immunology and cell biology of glycoconjugates, aspects related to disease processes (immunological, inflammatory, arthritic infections, metabolic disorders, malignancy, neurological disorders), structural and functional glycomics, glycoimmunology, glycovaccines, organic synthesis of glycoconjugates and the development of methodologies if biologically relevant, glycosylation changes in disease if focused on either the discovery of a novel disease marker or the improved understanding of some basic pathological mechanism, articles on the effects of toxicological agents (alcohol, tobacco, narcotics, environmental agents) on glycosylation, and the use of glycotherapeutics.
Glycoconjugate Journal is the official journal of the International Glycoconjugate Organization, which is responsible for organizing the biennial International Symposia on Glycoconjugates.