Péter Magyar, Szilárd Újvári, Zsófia Molnár, Zoltán Orgován, Diána Balogh-Weiser, Blanka Eszter Nagy, Diana Maria Scrob, László Poppe, Péter Ábrányi-Balogh
{"title":"缓冲介质介导的酶促无催化剂streker反应。","authors":"Péter Magyar, Szilárd Újvári, Zsófia Molnár, Zoltán Orgován, Diána Balogh-Weiser, Blanka Eszter Nagy, Diana Maria Scrob, László Poppe, Péter Ábrányi-Balogh","doi":"10.1002/open.202500389","DOIUrl":null,"url":null,"abstract":"<p><p>A systematic investigation of the catalyst-free Strecker reaction is conducted in aqueous buffer, offering an efficient and green alternative that leads to α-aminonitriles without the need of chromatography. Optimization reveals that low pH and high buffer concentration significantly enhance conversion, with yields up to 97%. Broad substrate scope is demonstrated with various aldehydes, ketones, and amines, leading to key intermediates for natural and unnatural amino acids. Potassium cyanide and acetone cyanohydrin are established, latter as a safer and effective cyanide source, and reactions are conducted also in buffer-methyl tert-butyl ether mixed solvent further improving the methodology. It is hypothesized that, based on the similarity to cyanohydrin formation, the hydroxynitrile lyases (HNLs) might transform imines to aminonitriles. Adding AtHNL and HbHNL further accelerates the reaction suggesting an undiscovered reactivity of these enzymes.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202500389"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Buffer-Mediated Catalyst-Free Strecker Reaction Toward Enzymatic Implementation.\",\"authors\":\"Péter Magyar, Szilárd Újvári, Zsófia Molnár, Zoltán Orgován, Diána Balogh-Weiser, Blanka Eszter Nagy, Diana Maria Scrob, László Poppe, Péter Ábrányi-Balogh\",\"doi\":\"10.1002/open.202500389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A systematic investigation of the catalyst-free Strecker reaction is conducted in aqueous buffer, offering an efficient and green alternative that leads to α-aminonitriles without the need of chromatography. Optimization reveals that low pH and high buffer concentration significantly enhance conversion, with yields up to 97%. Broad substrate scope is demonstrated with various aldehydes, ketones, and amines, leading to key intermediates for natural and unnatural amino acids. Potassium cyanide and acetone cyanohydrin are established, latter as a safer and effective cyanide source, and reactions are conducted also in buffer-methyl tert-butyl ether mixed solvent further improving the methodology. It is hypothesized that, based on the similarity to cyanohydrin formation, the hydroxynitrile lyases (HNLs) might transform imines to aminonitriles. Adding AtHNL and HbHNL further accelerates the reaction suggesting an undiscovered reactivity of these enzymes.</p>\",\"PeriodicalId\":9831,\"journal\":{\"name\":\"ChemistryOpen\",\"volume\":\" \",\"pages\":\"e202500389\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistryOpen\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/open.202500389\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/open.202500389","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A systematic investigation of the catalyst-free Strecker reaction is conducted in aqueous buffer, offering an efficient and green alternative that leads to α-aminonitriles without the need of chromatography. Optimization reveals that low pH and high buffer concentration significantly enhance conversion, with yields up to 97%. Broad substrate scope is demonstrated with various aldehydes, ketones, and amines, leading to key intermediates for natural and unnatural amino acids. Potassium cyanide and acetone cyanohydrin are established, latter as a safer and effective cyanide source, and reactions are conducted also in buffer-methyl tert-butyl ether mixed solvent further improving the methodology. It is hypothesized that, based on the similarity to cyanohydrin formation, the hydroxynitrile lyases (HNLs) might transform imines to aminonitriles. Adding AtHNL and HbHNL further accelerates the reaction suggesting an undiscovered reactivity of these enzymes.
期刊介绍:
ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.